Developing the mathematical model for fine impurities spreading in ventilation networks
Matematičeskoe modelirovanie, Tome 28 (2016) no. 8, pp. 65-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to develop a situational mathematical model describing the spread of fine impurities in ventilation networks by using gas-dynamic equations and approach based on numerical coupling regions of different dimensions.
Keywords: gas dynamics, hyperbolic equations, fine impurities, ventilation networks, mathematical modeling.
@article{MM_2016_28_8_a4,
     author = {Ya. A. Kholodov and M. O. Vasiliev and A. S. Kholodov and I. V. Tsybulin},
     title = {Developing the mathematical model for fine impurities spreading in ventilation networks},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--81},
     publisher = {mathdoc},
     volume = {28},
     number = {8},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_8_a4/}
}
TY  - JOUR
AU  - Ya. A. Kholodov
AU  - M. O. Vasiliev
AU  - A. S. Kholodov
AU  - I. V. Tsybulin
TI  - Developing the mathematical model for fine impurities spreading in ventilation networks
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 65
EP  - 81
VL  - 28
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_8_a4/
LA  - ru
ID  - MM_2016_28_8_a4
ER  - 
%0 Journal Article
%A Ya. A. Kholodov
%A M. O. Vasiliev
%A A. S. Kholodov
%A I. V. Tsybulin
%T Developing the mathematical model for fine impurities spreading in ventilation networks
%J Matematičeskoe modelirovanie
%D 2016
%P 65-81
%V 28
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_8_a4/
%G ru
%F MM_2016_28_8_a4
Ya. A. Kholodov; M. O. Vasiliev; A. S. Kholodov; I. V. Tsybulin. Developing the mathematical model for fine impurities spreading in ventilation networks. Matematičeskoe modelirovanie, Tome 28 (2016) no. 8, pp. 65-81. http://geodesic.mathdoc.fr/item/MM_2016_28_8_a4/

[1] G. B. Wallis, One-dimensional two-phase flow, Mcgraw-Hill, NY, 1969, 431 pp.

[2] R. I. Nigmatulin, Dinamika mnogofaznykh sred, v. 1, Nauka, M., 1987, 464 pp.

[3] S. K. Godunov, A. V. Zabrodin, M. Ia. Ivanov, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR

[4] I. M. Vasenin, E. R. Shrager, A. Iu. Krainov, D. Iu. Paleev, O. Iu. Lukashov, V. N. Kosterenko, “Matematicheskoe modelirovanie nestatsionarnykh protsessov ventiliatsii seti vyrabotok ugolnoi shakhty”, Kompiuternye issledovaniia i modelirovanie, 3:2 (2011), 155–163 | Zbl

[5] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems, 1st Edition, Chapman and Hall/CRC, 2000, 560 pp. | MR

[6] K. M. Magomedov, A. S. Kholodov, “The construction of difference schemes for hyperbolic equations based on characteristic relations”, USSR Computational Mathematics and Mathematical Physics, 9:2 (1969), 158–176 | DOI | MR | Zbl

[7] A. S. Kholodov, Ya. A. Kholodov, “Monotonicity criteria for difference schemes designed for hyperbolic equations”, Computational Mathematics and Mathematical Physics, 46:9 (2006), 1560–1588 | DOI | MR

[8] K. Y. Chien, “Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds-Number Turbulence Model”, AIAA Journal, 20:1 (1982), 33–38 | DOI | MR | Zbl

[9] A. S. Kholodov, “Construction of difference schemes with positive approximation for hyperbolic equations”, USSR Computational Mathematics and Mathematical Physics, 18:6 (1978), 116–132 | DOI | MR | Zbl

[10] O. V. Geller, M. O. Vasilev, Ia. A. Kholodov, “Postroenie vysokoproizvoditelnogo vychislitelnogo kompleksa dlia modelirovaniia zadach gazovoi dinamiki”, Kompiuternye issledovaniia i modelirovanie, 2:3 (2010), 311–319