The second order short-characteristics method for the solution of the transport equation on a tetrahedron grid
Matematičeskoe modelirovanie, Tome 28 (2016) no. 7, pp. 20-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the second order approximation method on unstructured tetrahedral mesh for solving the transport equation by the use of short characteristics is constructed. Second order polynomial interpolation constructed by the values at the tops of the illuminated face and the values of the integrals of the unknown function along the edges of the same face. The value in the nonilluminated top is obtained by integrating along the characteristic inside the tetrahedron from the interpolated value on the illuminated face. Accuracy of the method depends on the interpolation accuracy and the accuracy of the right part integration along the segment of the characteristic. In the case of piecewise constant approximation of the right part it is the second order of convergence on the condition that the solution has sufficient smoothness. On the test problems it is shown that in the case of smooth solutions the method has the order of convergence a little less than second, in the case of non-differentiable solution — lesser than first.
Mots-clés : transport equation
Keywords: method of short characteristics, interpolation-characteristic method, second order of approximation.
@article{MM_2016_28_7_a1,
     author = {E. N. Aristova and G. O. Astafurov},
     title = {The second order short-characteristics method for the solution of the transport equation on a tetrahedron grid},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {20--30},
     publisher = {mathdoc},
     volume = {28},
     number = {7},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_7_a1/}
}
TY  - JOUR
AU  - E. N. Aristova
AU  - G. O. Astafurov
TI  - The second order short-characteristics method for the solution of the transport equation on a tetrahedron grid
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 20
EP  - 30
VL  - 28
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_7_a1/
LA  - ru
ID  - MM_2016_28_7_a1
ER  - 
%0 Journal Article
%A E. N. Aristova
%A G. O. Astafurov
%T The second order short-characteristics method for the solution of the transport equation on a tetrahedron grid
%J Matematičeskoe modelirovanie
%D 2016
%P 20-30
%V 28
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_7_a1/
%G ru
%F MM_2016_28_7_a1
E. N. Aristova; G. O. Astafurov. The second order short-characteristics method for the solution of the transport equation on a tetrahedron grid. Matematičeskoe modelirovanie, Tome 28 (2016) no. 7, pp. 20-30. http://geodesic.mathdoc.fr/item/MM_2016_28_7_a1/

[1] S. T. Surzhikov, “Radiative-convective heat transfer of a spherically shaped space vehicle in carbon dioxide”, High Temperature, 49:1 (2011), 92–107 | DOI | MR

[2] D. A. Andrienko, S. T. Surzhikov, “The unstructured two-dimensional grid-based computation of selective thermal radiation in CO2-N2 mixture flows”, High Temperature, 50:4 (2012), 545–555 | DOI

[3] A. L. Zheleznyakova, S. T. Surzhikov, “Calculation of a Hypersonic Flow over Bodies of Complex Configuration on Unstructured Tetrahedral Meshes Using the AUSM Scheme”, High Temperature, 52:2 (2014), 271–281 | DOI

[4] E. N. Aristova, V. Ya. Goldin, “Low-cost calculation of multigroup neutron transport equations for time-to-time recalculation of averaged over spectrum cross-sections”, Math. Models Comput. Simul., 1:5 (2009), 561–572 | DOI | Zbl

[5] E. N. Aristova, D. F. Baydin, “Efficiency of quasi-diffusion methods for calculation of crucial parameters of fast reactors”, Math. Models Comput. Simul., 4:6 (2012), 568–573 | DOI | Zbl

[6] N. V. Zmitrenko, N. G. Proncheva, V. B. Rozanov, R. A. Yahin, “Model peremeshivaniya obolochek termoyadernoy lazernoy misheni pri sfericheskom szhatii”, Kvant. elektron., 37:8 (2007), 784–791

[7] A. G. Kulikovskii, N. V. Pogorelov, A. Iu. Semenov, Matematicheskie voprosy chislennogo resheniia giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001, 608 pp.

[8] V. Ya. Goldin, N. N. Kalitkin, T. V. Shishova, “Non-linear difference schemes for hyperbolic equations”, USSR Computational Mathematics and Mathematical Physics, 5:5 (1965), 229–239 | DOI | MR

[9] M. I. Bakirova, V. Ya. Karpov, M. I. Muhina, “A characteristic-interpolation method of solving transfer equation”, Difffer. Equ., 22:7 (1986), 788–794 | MR | Zbl

[10] V. E. Troshchiev, A. V. Nifanova, Yu. V. Troshchiev, “Characteristic Approach to the Approximation of Conservation Laws in Radiation Transfer Kinetic Equations”, Doklady Mathematics, 69:1 (2004), 136–140 | MR | Zbl

[11] K. M. Magomedov, A. S. Kholodov, Setochno-harakeristicheskie chislennye metody, Nauka, M., 1986, 287 pp.

[12] V. E. Troshchiev, A. V. Shumilin, “A difference scheme for solving the two-dimensional transport equation of irregular tetragonal nets”, USSR Computational Mathematics and Mathematical Physics, 26:1 (1986), 141–148 | DOI | MR | Zbl

[13] Yu. I. Skalko, R. N. Karasev, A. V. Akopyan, I. V. Tsibulin, M. A. Mendel, “Marsheviy algoritm resheniya zadachi perenosa izlucheniya metodom korotkih harakteristic”, Komputernie issledovaniya i modelirovanie, 6:2 (2014), 203–215

[14] O. V. Nikolaeva, “Nodal scheme to the radiation transport equation on unstructed tetrahedron mesh”, Math. Models Comput. Simul. | Zbl

[15] E. N. Aristova, D. F. Baydin, V. Ya. Goldin, “Dva varianta ekonomichnogo metoda resheniia uravneniia perenosa v $r$-$z$ geometrii na osnove perekhoda k peremennym Vladimirova”, Matematicheskoe modelirovanie, 18:7 (2006), 43–52 | Zbl

[16] D. F. Baydin, E. N. Aristova, V. Ya. Goldin, “Comparison of the efficiency of the transport equation calculation methods in characteristics variables”, Transp. Theory Stat. Phys., 37:2–4 (2008), 286–306 | DOI | MR | Zbl

[17] B. N. Delaunay, “Sur la sphère vide: A la mémoire de Georges Voronoï”, Bulletin de l'Académie des Sciences de l'URSS. Classe des sciences mathématiques et na, 1934, no. 6, 793–800