Reconstruction of body geometry on unstructured meshes when using immersed boundary method
Matematičeskoe modelirovanie, Tome 28 (2016) no. 6, pp. 77-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the reconstruction of body geometry basing on discrete elements of computational domain. This problem arises when numerically simulating flow around solid bodies with the use of immersed boundary method. The analysis of possible techniques of reconstruction is presented. Based on them the method of space reconstruction of bodies prescribed on unstructured meshes is built and used for the computation of model problems.
Keywords: numerical simulation, immersed boundary method, space triangulation, caching of data.
@article{MM_2016_28_6_a5,
     author = {I. V. Abalakin and N. S. Zhdanova and S. A. Soukov},
     title = {Reconstruction of body geometry on unstructured meshes when using immersed boundary method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {77--88},
     publisher = {mathdoc},
     volume = {28},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_6_a5/}
}
TY  - JOUR
AU  - I. V. Abalakin
AU  - N. S. Zhdanova
AU  - S. A. Soukov
TI  - Reconstruction of body geometry on unstructured meshes when using immersed boundary method
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 77
EP  - 88
VL  - 28
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_6_a5/
LA  - ru
ID  - MM_2016_28_6_a5
ER  - 
%0 Journal Article
%A I. V. Abalakin
%A N. S. Zhdanova
%A S. A. Soukov
%T Reconstruction of body geometry on unstructured meshes when using immersed boundary method
%J Matematičeskoe modelirovanie
%D 2016
%P 77-88
%V 28
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_6_a5/
%G ru
%F MM_2016_28_6_a5
I. V. Abalakin; N. S. Zhdanova; S. A. Soukov. Reconstruction of body geometry on unstructured meshes when using immersed boundary method. Matematičeskoe modelirovanie, Tome 28 (2016) no. 6, pp. 77-88. http://geodesic.mathdoc.fr/item/MM_2016_28_6_a5/

[1] R. Mittal, G. Iaccarino, “Immersed boundary methods”, Annual Review of Fluid Mechanics, 37 (2005), 239–261 | DOI | MR | Zbl

[2] C. S. Peskin, “Flow patterns around heart valves: a numerical method”, Jounal of Computational Physics, 10 (1972), 252–271 | DOI | MR | Zbl

[3] E. Brown-Dymkoski, N. Kasimov, O. V. Vasilyev, “A characteristic based volume penalization method for general evolution problems applied to compressible viscous flows”, Journal of Computational Physics, 262 (2014), 344–357 | DOI | MR

[4] I. V. Abalakin, N. S. Zhdanova, T. K. Kozubskaia, “Realizatsiia metoda pogruzhennykh granits dlia modelirovaniia zadach vneshnego obtekaniia na nestrukturirovannykh setkakh”, Matematicheskoe modelirovanie, 27:10 (2015), 5–20 | Zbl

[5] M. Laslo, Vychislitelnaia geometriia i kompiuternaia grafika na C++, BINOM, M., 1997, 304 pp.

[6] F. Preparata, M. Sheimoc, Vychislitelnaia geometriia: vvedenie, Mir, M., 1989, 478 pp. | MR

[7] V. L. Rvachev, Metody algebry logiki v matematicheskoi fizike, Naukova dumka, Kiev, 1974, 259 pp. | MR

[8] A. V. Skvortsov, N. S. Mirza, Algoritmy postroeniia i analiza trianguliatsii, Izd-vo Tom. un-ta, Tomsk, 2006, 167 pp.

[9] E. V. Shikin, A. V. Boreskov, Kompiuternaia grafika. Poligonalnye modeli, DIALOG-MIFI, M., 2005, 223 pp.

[10] E. N. Golovchenko, “Parallelnyi paket dekompozitsii bolshikh setok”, Matematicheskoe modelirovanie, 23:10 (2011), 3–18 | MR

[11] G. Karypis, V. Kumar, “Multilevel k-way partitioning scheme for irregular graphs”, Journal of Parallel and Distributed Computing, 48:1 (1998), 96–129 | DOI | MR

[12] G. Karypis, V. Kumar, “Parallel multilevel k-way partitioning scheme for irregular graphs”, Siam Review, 41:2 (1999), 278–300 | DOI | MR | Zbl

[13] I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben, T. K. Kozubskaia, “Parallelnyi programmnyi kompleks NOISETTE dlia krupnomasshtabnykh raschetov zadach aerodinamiki i aeroakustiki”, Vychislitelnye metody i programmirovanie, 13 (2012), 110–125

[14] J. C. R. Hunt, A. A. Wray, P. Moin, Eddies, stream, and convergence zones in turbulent flows, Center for Turbulence Research Report, CTR-S88, 1988, 193–208

[15] P. V. Matiushin, Chislennoe modelirovanie prostranstvennykh otryvnykh techenii odnorodnoi neszhimaemoi viazkoi zhidkosti okolo sfery, dissertatsiia ... kand. fiz.-mat. nauk, Inst. avtomatizatsii proektirovaniia RAN, M., 2003