Mathematical modeling of gasdynamic flows, accompanying Bora winds
Matematičeskoe modelirovanie, Tome 28 (2016) no. 6, pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

Processes of Bora winds emergence in a bay of Novorossiysk are investigated. The mathematical model based on the Euler's two-dimensional gasdynamic equations with gravitation is offered. The movement of the air front through a coastal ridge with the subsequent emergence of turbulent flow over a sea surface is simulated. Influence of parameters of the influent stream and gravitation is studied. It is shown that the connected to catastrophic consequences in a coastal strip conditions leading to gale-force winds over the sea surface are defined by Calvin–Helmholtz's instability in a shear flow.
Keywords: Bora winds, computational gas dynamics, gravity, shear flow, Calvin–Helmholtz's instability.
@article{MM_2016_28_6_a0,
     author = {M. V. Abakumov and A. M. Lipanov and Yu. P. Popov},
     title = {Mathematical modeling of gasdynamic flows, accompanying {Bora} winds},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {28},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_6_a0/}
}
TY  - JOUR
AU  - M. V. Abakumov
AU  - A. M. Lipanov
AU  - Yu. P. Popov
TI  - Mathematical modeling of gasdynamic flows, accompanying Bora winds
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 3
EP  - 17
VL  - 28
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_6_a0/
LA  - ru
ID  - MM_2016_28_6_a0
ER  - 
%0 Journal Article
%A M. V. Abakumov
%A A. M. Lipanov
%A Yu. P. Popov
%T Mathematical modeling of gasdynamic flows, accompanying Bora winds
%J Matematičeskoe modelirovanie
%D 2016
%P 3-17
%V 28
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_6_a0/
%G ru
%F MM_2016_28_6_a0
M. V. Abakumov; A. M. Lipanov; Yu. P. Popov. Mathematical modeling of gasdynamic flows, accompanying Bora winds. Matematičeskoe modelirovanie, Tome 28 (2016) no. 6, pp. 3-17. http://geodesic.mathdoc.fr/item/MM_2016_28_6_a0/

[1] K. S. Veselovskii, O klimate Rossii, Tip. Imper. AN, SPb., 1857, 764 pp.

[2] F. F. Vrangel, Novorossiiskaia bora i ee teoriia, Tip. Iu. G. Reno, Nikolaev, 1876, 17 pp.

[3] N. A. Korostelev, “Novorossiiskaia bora”, Zapiski AN po Fiziko-matematicheskomu otdeleniiu, 15, no. 2, Tip. Imper. AN, SPb., 1904, 135 pp.

[4] A. M. Gusev (red.), “Novorossiiskaia bora”, Tr. Morskogo gidrofiz. in-ta, 14, Izd-vo AN SSSR, M., 1959, 140 pp.

[5] I. A. Repina, “«Veter, veter na vsem Bozhem svete....» O prirode mestnykh katabaticheskikh vetrov”, Priroda, 2008, no. 5, 36–43

[6] L. D. Landau, E. M. Lifshits, Teoreticheskaia fizika, v. 6, Gidrodinamika, Nauka, M., 1988, 736 pp. | MR

[7] S. P. Khromov, M. A. Petrosiants, Meteorologiia i klimatologiia, Uchebnik, Izd-vo MGU, M., 2006, 582 pp.

[8] S. K. Godunov, “Raznostnyi metod chislennogo rascheta razryvnykh reshenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl

[9] S. K. Godunov, A. V. Zabrodin, G. P. Prokopov, “Raznostnaia skhema dlia dvumernykh nestatsionarnykh zadach gazovoi dinamiki i raschet obtekaniia s otoshedshei udarnoi volnoi”, Vychisl. matem. i matem. fiz., 1:6 (1961), 1020–1050 | MR | Zbl

[10] P. L. Roe, “Characteristic-based schemes for the Euler equations”, Annual Review of Fluid Mechanics, 18 (1986), 337–365 | DOI | MR | Zbl

[11] B. Einfeld, “On Godunov-type methods for gas dynamics”, SIAM Journal on numerical analysis, 25 (1988), 294–318 | DOI | MR | Zbl

[12] S. Chakravarthy, S. Osher, A new class of high accuracy TVD schemes for hyperbolic conservation laws, AIAA Paper No 85-0363, 1985, 11 pp.

[13] M. V. Abakumov, Ob osobennostiakh ispolzovaniia gazodinamicheskikh skhem s potokami v poliarnykh koordinatakh, Preprint, MAKS-Press, M., 2006, 24 pp.

[14] M. V. Abakumov, Postroenie potokovykh raznostnykh skhem dlia rascheta techenii viazkogo szhimaemogo gaza v tsilindricheskikh koordinatakh, Preprint, MAKS-Press, M., 2010, 42 pp.

[15] C. C. Lin, The Theory of Hydrodynamic Stability, Cambridge University Press, 1955, 153 pp. | MR | Zbl

[16] O. M. Belotserkovskii, A. M. Oparin, V. M. Chechetkin, “Obrazovanie krupnomasshtabnykh struktur v zazore mezhdu vraschayuschimisya tsilindrami (zadacha Releya–Zeldovicha)”, Vychisl. matem. i matem. fiz., 42:11 (2002), 1727–1737 | MR | Zbl