Numerical simulation of strongly nonequilibrium processes in magnetic materials based on the physical kinetics equations
Matematičeskoe modelirovanie, Tome 28 (2016) no. 5, pp. 24-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical simulation of magnetic materials play an important role in the development of various spintronics devices. The most common way to construct mathematical model of magnetic material is to base it on the system of Landau–Lifshitz equations. For example for derivation of Landau–Lifshitz–Bloch equation multiplicative approximation of the mean field was implicitly used. That approximation corresponds in the equilibrium state to the Curie–Weiss theory. In this paper it is showed that multiplicative approximation does not describe the remagnetization process correctly. The phenomenological model that takes nearest neighbour correlations into account not only allows to obtain the correct values of the critical temperature and mean exchange energy of a system but also qualitatively describes the strongly nonequilibrium remagnetization processes.
Keywords: Landau–Lifshitz equation; modeling of magnetic materials; kinetic equations.
@article{MM_2016_28_5_a1,
     author = {S. A. Khilkov and A. V. Ivanov and E. V. Zipunova},
     title = {Numerical simulation of strongly nonequilibrium processes in magnetic materials based on the physical kinetics equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {24--31},
     publisher = {mathdoc},
     volume = {28},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_5_a1/}
}
TY  - JOUR
AU  - S. A. Khilkov
AU  - A. V. Ivanov
AU  - E. V. Zipunova
TI  - Numerical simulation of strongly nonequilibrium processes in magnetic materials based on the physical kinetics equations
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 24
EP  - 31
VL  - 28
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_5_a1/
LA  - ru
ID  - MM_2016_28_5_a1
ER  - 
%0 Journal Article
%A S. A. Khilkov
%A A. V. Ivanov
%A E. V. Zipunova
%T Numerical simulation of strongly nonequilibrium processes in magnetic materials based on the physical kinetics equations
%J Matematičeskoe modelirovanie
%D 2016
%P 24-31
%V 28
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_5_a1/
%G ru
%F MM_2016_28_5_a1
S. A. Khilkov; A. V. Ivanov; E. V. Zipunova. Numerical simulation of strongly nonequilibrium processes in magnetic materials based on the physical kinetics equations. Matematičeskoe modelirovanie, Tome 28 (2016) no. 5, pp. 24-31. http://geodesic.mathdoc.fr/item/MM_2016_28_5_a1/

[1] Zvezdin A. K., Zvezdin K. A., Khval'kovskii A. V., “The generalized Landau–Lifshitz equation and spin transfer processes in magnetic nanostructures”, Phys. Usp., 51:4 (2008), 412–417 | DOI | DOI

[2] Coffey W. T., Kalmykov Yu. P., Waldron J. T., The Langevin equation: with applications to stochastic problems in physics, chemistry and electrical engineering, World Scientific Series in Contemporary Chemical Physics, 2nd ed., World Scientific, Singapore, 2004 | MR | Zbl

[3] Garanin D. A., “Fokker–Planck and Landau–Lifshitz–Bloch equations for classical ferromagnets”, Phys. Rev. B, 55, Feb. (1997), 3050–3057 | DOI

[4] Akhiezer A. I., Peletminskii S. V., Metody statisticheskoi fiziki, Nauka, M., 1977 | MR

[5] Zipunova E. V., Ivanov A. V., “Vybor optimalnoi chislennoi skhemy dlia modelirovaniia sistemy uravnenii Landau–Lifshitsa c uchetom temperaturnykh fluktuatsii”, Matematicheskoe modelirovanie, 26:2 (2014), 33–49 | Zbl

[6] Garanin D. A., “Selfconsistent Gaussian approximation for classical spin systems: Thermodynamics”, Phys. Rev. B, 53:May (1996), 11593–11605 | DOI

[7] Khilkov S. A., Ivanov A. V., “Numerical simulation of the magnetic moment distribution evolution for superparamagnetic materials”, Keldysh Institute Preprint, 2014, 001, 16 pp.

[8] Ivanov A. V., “Kineticheskoe modelirovanie dinamiki magnetikov”, Matematicheskoe modelirovanie, 19:10 (2007), 89–104 | MR | Zbl