Calculation of the sound field in inhomogeneous layered hydro-acoustic waveguide with a stepped bottom
Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 99-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the model of the waveguide which is a multi-layered medium with a cylindrical sea-mount, the asymptotic behavior of unknowns in the corresponding infinite system is studied. The obtained asymptotic behavior of the unknowns allows us to use the method of improved reduction for finding of the coefficients of the normal modes. The convergence of algorithm is illustrated by the example of some geophysical waveguides.
Keywords: multi-layer hydro-acoustic waveguide, cylindrical sea-mount, infinite system of linear algebraic equations, asymptotic behavior.
Mots-clés : normal modes
@article{MM_2016_28_4_a7,
     author = {Yu. I. Papkova},
     title = {Calculation of the sound field in inhomogeneous layered hydro-acoustic waveguide with a stepped bottom},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {99--110},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_4_a7/}
}
TY  - JOUR
AU  - Yu. I. Papkova
TI  - Calculation of the sound field in inhomogeneous layered hydro-acoustic waveguide with a stepped bottom
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 99
EP  - 110
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_4_a7/
LA  - ru
ID  - MM_2016_28_4_a7
ER  - 
%0 Journal Article
%A Yu. I. Papkova
%T Calculation of the sound field in inhomogeneous layered hydro-acoustic waveguide with a stepped bottom
%J Matematičeskoe modelirovanie
%D 2016
%P 99-110
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_4_a7/
%G ru
%F MM_2016_28_4_a7
Yu. I. Papkova. Calculation of the sound field in inhomogeneous layered hydro-acoustic waveguide with a stepped bottom. Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 99-110. http://geodesic.mathdoc.fr/item/MM_2016_28_4_a7/

[1] L. M. Brekhovskikh, Volny v sloistykh sredakh, Nauka, M., 1973, 343 pp.

[2] Guan Wei, Hu Hengshan, He Xiao, “Finite-difference modeling of the monopole acoustic logs in a horizontally stratified porous formation”, J. Acoust. Soc. Am., 125:4 (2009), 1942–1951 | DOI

[3] K. L. Williams, S. G. Kargl, E. I. Thorsos, D. S. Burnett, J. L. Loped, M. Zampolli, P. L. Marston, “Acoustic scatterng from a solid aluminum cylinder in contact with a sand sediment: Measurements, modeling and interpretation”, J. Acoust. Soc. Am., 127:6 (2010), 3356–3372 | DOI

[4] M. J. Buckingham, E. M. Giddens, “On the acoustic field in a Pekeris waveguide with attenuation in the bottom half-space”, J. Acoust. Soc. Am., 1:4 (2006), 123–142 | DOI

[5] E. Kamke, Handbuch der gewöhnlichen Differentialgleichungen | MR

[6] Iu. I. Papkova, “Volnovod Pekerisa v sluchae neodnorodnogo profilia skorosti zvuka i pogloshchaiushchego osnovaniia”, Akusticheskii vestnik (ukr.), 2010, no. 3, 42–50 | MR

[7] E. L. Shenderov, Izluchenie i rasseianie zvuka, Sudostroenie, L., 1989, 352 pp.

[8] M. V. Fedoriuk, Asimptotika: Integraly i riady, Nauka, Gl. red. fiz.-mat. lit., M., 1987, 544 pp. | MR

[9] M. Abramowitz, I. Stegun (eds.), Handbook of mathematical functions, National Bureau of Standards, N.Y., 1965 | MR