Effective retraining "models" in the method of multivariate interpolation
Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 92-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate machine learning method based on the theory of random functions. This paper shows a method of rapid retraining "model" when adding new data to the existing ones. This approach reduces the computational complexity of constructing an updated "model" from $O(m^3)$ to from $O(m^2)$. The term "model" means interpolating or approximating function constructed from the training data. This approach can have an independent value in the area of linear algebra as applied to a well-conditioned linear systems with symmetric matrix.
Keywords: machine learning, random function, system of linear equations.
Mots-clés : interpolation
@article{MM_2016_28_4_a6,
     author = {U. N. Bakhvalov and I. V. Kopylov},
     title = {Effective retraining "models" in the method of multivariate interpolation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {92--98},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_4_a6/}
}
TY  - JOUR
AU  - U. N. Bakhvalov
AU  - I. V. Kopylov
TI  - Effective retraining "models" in the method of multivariate interpolation
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 92
EP  - 98
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_4_a6/
LA  - ru
ID  - MM_2016_28_4_a6
ER  - 
%0 Journal Article
%A U. N. Bakhvalov
%A I. V. Kopylov
%T Effective retraining "models" in the method of multivariate interpolation
%J Matematičeskoe modelirovanie
%D 2016
%P 92-98
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_4_a6/
%G ru
%F MM_2016_28_4_a6
U. N. Bakhvalov; I. V. Kopylov. Effective retraining "models" in the method of multivariate interpolation. Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 92-98. http://geodesic.mathdoc.fr/item/MM_2016_28_4_a6/

[1] Iu. N. Bakhvalov, Metod mnogomernoi interpoliacii i approksimacii i ego prilozhenia, Sputnik+, M., 2007, 108 pp.

[2] Iu. N. Bakhvalov, L. L. Malygin, P. S. Cherkas, “Metod mashinnogo obycheniia na osnove mnogomernoi interpoliacii i approksimacii sluchainykh funktsii”, Vestnik Cherepovetskogo gosudarstvennogo universiteta, 2:2 (2012), 7–9