Effective retraining "models" in the method of multivariate interpolation
Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 92-98
Cet article a éte moissonné depuis la source Math-Net.Ru
We investigate machine learning method based on the theory of random functions. This paper shows a method of rapid retraining "model" when adding new data to the existing ones. This approach reduces the computational complexity of constructing an updated "model" from $O(m^3)$ to from $O(m^2)$. The term "model" means interpolating or approximating function constructed from the training data. This approach can have an independent value in the area of linear algebra as applied to a well-conditioned linear systems with symmetric matrix.
Keywords:
machine learning, random function, system of linear equations.
Mots-clés : interpolation
Mots-clés : interpolation
@article{MM_2016_28_4_a6,
author = {U. N. Bakhvalov and I. V. Kopylov},
title = {Effective retraining "models" in the method of multivariate interpolation},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {92--98},
year = {2016},
volume = {28},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2016_28_4_a6/}
}
U. N. Bakhvalov; I. V. Kopylov. Effective retraining "models" in the method of multivariate interpolation. Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 92-98. http://geodesic.mathdoc.fr/item/MM_2016_28_4_a6/
[1] Iu. N. Bakhvalov, Metod mnogomernoi interpoliacii i approksimacii i ego prilozhenia, Sputnik+, M., 2007, 108 pp.
[2] Iu. N. Bakhvalov, L. L. Malygin, P. S. Cherkas, “Metod mashinnogo obycheniia na osnove mnogomernoi interpoliacii i approksimacii sluchainykh funktsii”, Vestnik Cherepovetskogo gosudarstvennogo universiteta, 2:2 (2012), 7–9