An economic method for simulating steady-state conditions in gas transport systems
Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 64-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

An economic iterative method is proposed for simulating steady-state conditions in complex gas transport systems of any topology. The method exploits a fast algebraic pipe model with periodic identification which is used to adjust the model to the steady-state conditions under consideration and to provide the required accuracy of calculation. The identification procedure is based on the solution of stationary hydrodynamic equations. The gas transport system is represented as a list of pipes and a list of joints (nodes). As an initial approximation, we define gas pressures and temperatures in the nodes thus setting boundary conditions for the steady-state flow. In the global iterations of the method, the pressures and temperatures are updated so as to make flow disbalance tend to zero. The method allows parallel computing on multiprocessor computers. It is implemented as a separate module in the VOLNA software. Its efficiency is demonstrated through a sample calculation for the gas transport system. A number of related issues are considered, including simulation accuracy, peculiarities in the solution of stationary equations, correctness of calculation setup etc. The method can be used in combination with any other model of piped compressible gas.
Keywords: simulation of gas-transport systems, steady-state conditions, natural gas, pipeline, computational approach, software package.
@article{MM_2016_28_4_a4,
     author = {Maksim G. Anuchin and Mikhail G. Anuchin and A. N. Kuznetsov},
     title = {An economic method for simulating steady-state conditions in gas transport systems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {64--76},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_4_a4/}
}
TY  - JOUR
AU  - Maksim G. Anuchin
AU  - Mikhail G. Anuchin
AU  - A. N. Kuznetsov
TI  - An economic method for simulating steady-state conditions in gas transport systems
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 64
EP  - 76
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_4_a4/
LA  - ru
ID  - MM_2016_28_4_a4
ER  - 
%0 Journal Article
%A Maksim G. Anuchin
%A Mikhail G. Anuchin
%A A. N. Kuznetsov
%T An economic method for simulating steady-state conditions in gas transport systems
%J Matematičeskoe modelirovanie
%D 2016
%P 64-76
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_4_a4/
%G ru
%F MM_2016_28_4_a4
Maksim G. Anuchin; Mikhail G. Anuchin; A. N. Kuznetsov. An economic method for simulating steady-state conditions in gas transport systems. Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 64-76. http://geodesic.mathdoc.fr/item/MM_2016_28_4_a4/

[1] Max. G. Anuchin, Mikh. G. Anuchin, A. A. Vorobev, A. A. Kalinin, G. V. Kaspiev, A. N. Kuznetsov, V. N. Yushmanov, A. Ya. Yakovlev, “A Technique Implemented in the VOLNA Code Package to Simulate the Natural Gas Flux in Pipelines”, Mathematical Models and Computer Simulations, 7:1 (2015), 62–68 | DOI | Zbl

[2] Averianov V. K., Novitskii M. G., Sukharev M. G. i dr. (red.), Truboprovodnye sistemy energetiki. Razvitie teorii i metodov matematicheskogo modelirovaniia i optimizatsii, Nauka, Novosibirsk, 2008, 312 pp.

[3] M. G. Anuchin, S. V. Gagarin, A. O. Ignatev, A. A. Kalinin, A. N. Kuznetsov, V. A. Suchkov, S. A. Shnitko, “Nestatsionarnaia model magistralnogo transporta prirodnogo gaza”, Razvitie kompiuternykh kompleksov modelirovaniia i optimizatsii rezhimov raboty sistem gazosnabzheniia i ikh rol v dispetcherskom upravlenii tekhnologicheskimi protsessami v gazovoi otrasli, Materialy 1-i Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii (Moskva, 2004), v. 2, 33–39

[4] J. O. Valderrama, “The State of the Cubic Equations of State”, Ind. Eng. Chem. Res., 42 (2003), 1603–1618 | DOI

[5] V. E. Seleznev, S. N. Prialov, Metody postroeniia modelei techenii v magistralnykh truboprovodakh i kanalakh, Editorial URSS, M., 2012, 560 pp.

[6] P. Bartsch, A. Borzi, “On the modeling and simulation of boundary flow through partially open pipe ends”, Z. angew. Math. Phys., 55 (2004), 946–961 | DOI | MR | Zbl