The parametrical analysis of conditions of gyroscopic stabilization of the relative equilibriums of oblate axisymmetric gyrostat
Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 33-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

The parametrical analysis of conditions of gyroscopic stabilization of the unstable equilibriums specified in heading orbital gyrostat has been carried out. Statements about the solution of corresponding system of inequalities in the form of intervals of values of the parameter defining one of two nonzero component of a constant inner moment vector have been formulated. Investigations were fulfilled by Mathematica LinModel package and Mathematica built-in tools for symbolic-numerical modelling.
Keywords: stationary gyrostat, stability of positions of equilibrium, degree of instability, gyroscopic stabilization, system of inequalities, computer algebra, program complex.
@article{MM_2016_28_4_a2,
     author = {A. V. Banshchikov},
     title = {The parametrical analysis of conditions of gyroscopic stabilization of the relative equilibriums of oblate axisymmetric gyrostat},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--42},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_4_a2/}
}
TY  - JOUR
AU  - A. V. Banshchikov
TI  - The parametrical analysis of conditions of gyroscopic stabilization of the relative equilibriums of oblate axisymmetric gyrostat
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 33
EP  - 42
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_4_a2/
LA  - ru
ID  - MM_2016_28_4_a2
ER  - 
%0 Journal Article
%A A. V. Banshchikov
%T The parametrical analysis of conditions of gyroscopic stabilization of the relative equilibriums of oblate axisymmetric gyrostat
%J Matematičeskoe modelirovanie
%D 2016
%P 33-42
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_4_a2/
%G ru
%F MM_2016_28_4_a2
A. V. Banshchikov. The parametrical analysis of conditions of gyroscopic stabilization of the relative equilibriums of oblate axisymmetric gyrostat. Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 33-42. http://geodesic.mathdoc.fr/item/MM_2016_28_4_a2/

[1] S. V. Chaikin, A. V. Banshchikov, “O giroscopicheskoi stabilizatsii otnositelnykh ravnovesii orbitalnogo osesimmetrichnogo girostata”, Matematicheskoe modelirovanie, 25:5 (2013), 109–122 | MR

[2] A. V. Banshchikov, L. A. Burlakova, V. D. Irtegov, T. N. Titorenko, “Simvolnye vychisleniia v modelirovanii i kachestvennom analize dinamicheskikh system”, Vychislitelnye tekhnologii, 19:6 (2014), 3–18

[3] V. A. Sarychev, Voprosy orientatsii iskustvennykh sputnikov, Itogi nauki i tekhniki. Issledovanie kosmicheskogo prostranstva, 11, VINITI AN SSSR, M., 1978, 223 pp.

[4] A. Anchev, Ravnovesni orientatsii na spietnik s rotari, Izdatelstvo na Bielgarskata akademiia na naukite, Sofiia, 1982, 131 pp.

[5] V. A. Sarychev, S. A. Mirer, A. A. Degtyarev, “Dynamics of a gyrostat satellite with the vector of gyrostatic moment in the principal plane of inertia”, Cosmic Res., 46:1 (2008), 60–73 | DOI | MR

[6] S. A. Gutnik, V. A. Sarychev, “Dynamics of an axisymmetric gyrostat satellite. Equilibrium positions and their stability”, J. Appl. Math. Mech., 78:3 (2014), 249–257 | DOI | MR

[7] V. V. Kozlov, “Stabilization of the unstable equilibria of charges by intense magnetic fields”, J. Appl. Math. Mech., 61:3 (1997), 377–384 | DOI | MR | Zbl

[8] N. G. Chetaev, Ustoichivost dvigeniia. Raboty po analiticheskoi mekhanike, Izdatelstvo AN SSSR, M., 1962, 535 pp. | MR