On justification of the Godunov scheme in multidimensional case
Matematičeskoe modelirovanie, Tome 28 (2016) no. 2, pp. 86-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

Classical Godunov scheme for numerical solution of 3D gasdynamics equations is justified for multidimensional case. It is istimated an error introduced by replacing the exact solution of the multidimensional Riemann problem at solving one-dimensional problems with the data on the left and right of the interface of each cell without taking account of complicated flow in the vicinity of the vertices of the cell. It is shown that in the case of plane interfaces the error is the first order with respect to time step and approximate solution converges to solution of semidiscrete equations. The Euler explicit time integration metod for these equations represents the Godunov scheme.
Keywords: computational fluid dynamics, Godunov scheme, multidimensional Riemann solvers.
@article{MM_2016_28_2_a7,
     author = {V. F. Tishkin and V. T. Zhukov and E. E. Myshetskaya},
     title = {On justification of the {Godunov} scheme in multidimensional case},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {86--96},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_2_a7/}
}
TY  - JOUR
AU  - V. F. Tishkin
AU  - V. T. Zhukov
AU  - E. E. Myshetskaya
TI  - On justification of the Godunov scheme in multidimensional case
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 86
EP  - 96
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_2_a7/
LA  - ru
ID  - MM_2016_28_2_a7
ER  - 
%0 Journal Article
%A V. F. Tishkin
%A V. T. Zhukov
%A E. E. Myshetskaya
%T On justification of the Godunov scheme in multidimensional case
%J Matematičeskoe modelirovanie
%D 2016
%P 86-96
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_2_a7/
%G ru
%F MM_2016_28_2_a7
V. F. Tishkin; V. T. Zhukov; E. E. Myshetskaya. On justification of the Godunov scheme in multidimensional case. Matematičeskoe modelirovanie, Tome 28 (2016) no. 2, pp. 86-96. http://geodesic.mathdoc.fr/item/MM_2016_28_2_a7/

[1] S. K. Godunov, “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47:3 (1959), 271–306 | MR | Zbl

[2] O. M. Belotserkovskii, “O raschete obtekaniia osesimmetricheskikh tel s otoshedshei udarnoi volnoi na elektronnoi schetnoi mashine”, Prikl. matem. i mekhanika, 24:3 (1960), 7 pp. | MR

[3] S. K. Godunov (red.), Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR

[4] S. K. Godunov, Vospominaniia o raznostnykh skhemakh, Dokl. na Mezhdunar. simpoz. “Metod Godunova v gazovoi dinamike” (1997, Michigan. un-t), Nauch. Kn., Novosibirsk, 1997, 40 pp.

[5] D. S. Balsara, “A two-dimensional HLLC Riemann solver for conservation laws: Application to Euler and magnetohydrodynamic flows”, Journal of Computational Physics, 231:22 (2012), 7476–7503 | DOI | MR | Zbl

[6] D. S. Balsara, M. Dumbser, R. Abgrall, “Multidimensional HLLC Riemann solver for unstructured meshes-with application to Euler and MHD flows”, Journal of Computational Physics, 261 (2014), 172–208 | DOI | MR

[7] L. Gosse, “A two-dimensional version of the Godunov scheme for scalar balance laws”, SIAM J. Numer. Anal., 52:2 (2014), 626–652 | DOI | MR | Zbl

[8] M. E. Ladonkina, V. F. Tishkin, “O sviazi razryvnogo metoda Galerkina i metodov tipa Godunova vysokogo poriadka tochnosti”, Keldysh Institute preprints, 2014, 049, 10 pp. | Zbl

[9] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Application of the RKDG Method for Gas Dynamics Problems”, Mathematical Models and Computer Simulations, 6:4 (2014), 397–407 | DOI | MR | MR

[10] M. E. Ladonkina, V. F. Tishkin, “On Godunov-type methods of high order of accuracy”, Doklady Mathematics, 91:2 (2015), 189–192 | DOI | DOI | MR | Zbl

[11] M. E. Ladonkina, V. F. Tishkin, “Godunov Method: a Generalization Using Piecewise Polynomial Approximations”, Differential Equations, 51:7 (2015), 895–903 | DOI | DOI | MR | Zbl