On thermoelastic deformations in graphene and analogous two-dimensional materials
Matematičeskoe modelirovanie, Tome 28 (2016) no. 2, pp. 40-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider stationary heat transport in a macroscopic 2D sample, e.g., graphene, based on Duhamel–Neumann equations under the assumption of small elastic deformations. We develop a monotonous (according to Friedrichs) finite-difference scheme on a chaotic grid for a sample of arbitrary shape and study heat transport numerically.
Mots-clés : graphene
Keywords: elastic deformations, heat conductivity, numerical modeling.
@article{MM_2016_28_2_a4,
     author = {A. S. Kholodov},
     title = {On thermoelastic deformations in graphene and analogous two-dimensional materials},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {40--52},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_2_a4/}
}
TY  - JOUR
AU  - A. S. Kholodov
TI  - On thermoelastic deformations in graphene and analogous two-dimensional materials
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 40
EP  - 52
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_2_a4/
LA  - ru
ID  - MM_2016_28_2_a4
ER  - 
%0 Journal Article
%A A. S. Kholodov
%T On thermoelastic deformations in graphene and analogous two-dimensional materials
%J Matematičeskoe modelirovanie
%D 2016
%P 40-52
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_2_a4/
%G ru
%F MM_2016_28_2_a4
A. S. Kholodov. On thermoelastic deformations in graphene and analogous two-dimensional materials. Matematičeskoe modelirovanie, Tome 28 (2016) no. 2, pp. 40-52. http://geodesic.mathdoc.fr/item/MM_2016_28_2_a4/

[1] K. S. Novoselov et al., Nature, 438 (2005), 192 | DOI

[2] A. Kara, C. L'eandri, M. E. D'avila, P. de Padova, B. Ealet, H. Oughaddou, B. Aufray, G. Le Lay, Physics of silicene stripes, 2008, arXiv: 0811.2611

[3] R. R. Nair, W. C. Ren, R. Jalil, I. Riaz, V. G. Kravets, L. Britnell, P. Blake, F. Schedin, A. S. Mayorov, S. Yuan, M. I. Katsnelson, H. M. Cheng, W. Strupinski, L. G. Bulusheva, A. V. Okotrub, I. V. Grigorieva, A. N. Grigorenko, K. S. Novoselov, A. K. Geim, Fluorographene: A Two-Dimensional Counterpart of Teflon, arXiv: 1006.3016

[4] http://mipt.ru/NIU/publications/video.html

[5] L. D. Landau, E. M. Lifshitz, Theory of Elasticity, v. 7, Course of Theoretical Physics, Pergamon Press, 1970 | MR

[6] V. Novatskii, Teoriia uprugosti, Mir, M., 1970, 256 pp.

[7] V. Z. Parton, P. I. Perlin, Metody matematicheskoi teorii uprugosti, Nauka, M., 1981, 688 pp. | MR

[8] A. M. Krivtsov, Uprugie svoistva odnoatomnykh i dvukhatomnykh kristallov, Uchebnoe posobie, Izd. Politekhnicheskogo universiteta, SPb., 2009, 124 pp.

[9] O. L. Blakslee. D. G. Procto, E. J. Seldin, “Elastic constants of compression-annealed pyrolytic graphite”, J. Appl. Phys., 41:8 (1970), 3373–3389 | DOI

[10] I. E. Berinskii, N. G. Dvas, A. M. Krivtsov i dr., Teoreticheskaia mekhanika. Uprugie i teplovye svoistva idealnykh odnoatomnykh I dvukhatomnykh kristallov, Uchebnoe pocobie, Izd. Politekhnicheskogo universiteta, SPb., 2009, 143 pp.

[11] E. I. Zhmurikov, I. V. Savchenko, S. V. Stankus, L. Tecchio, Izmereniia teplofizicheskikh svoistv grafitovykh kompozitov dlia konvertora neitronnoi misheni, Preprint No 27, In. iadernoi fiziki im. G. I. Budkera SO RAN, Novosibirsk, 2010

[12] S. Iu. Davydov, “O silovykh konstantakh grafena”, Fizika tverdogo tela, 52:9 (2010), 1815–1818

[13] M. Topsakal, S. Ciraci, “Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: A first-principles density-functional theory study”, Physical Review, 81 (2010), 02410

[14] A. S. Kholodov, “Monotonnye raznostnye skhemy na nereguliarnykh setkakh dlia ellipticheskikh uravnenii v oblasti so mnogimi nesviaznymi granitsami”, Matematicheskoe modelirovanie, 3:9 (1991), 104–113 | MR | Zbl

[15] A. S. Kholodov, “Monotonic Difference Schemes on Irregular Grids for Elliptic Equations in a Region with Many Disconnected Boundaries”, Mathematical Modeling Computational experiment, 3:9 (1994), 3–11 | MR

[16] A. A. Samarskii, E. S. Nikolaev, Metody resheniia setochnykh uravnenii, Nauka, M., 1977, 590 pp. | MR

[17] A. S. Kholodov, A. I. Lobanov, “Computational experiment in ecology and medicine: elliptic problems”, Phystech Journal, 1:2 (1994), 3–11 | MR

[18] O. M. Belotserkovskii, A. S. Kholodov, “Majorizing schemes on unstructured grids in the space of indeterminate coefficients”, Computational mathematics and mathematical physics, 39:11 (1999), 1730–1747 | MR | Zbl

[19] A. A. Batischeva, O. V. Batischev, A. S. Kholodov, S. I. Krasheninnikov, D. Sigmar, “Unstructured Adaptive Grid and Grid-free Methods for the Edge Plasmas”, Proceedings 16th International Conference on the Numerical Simulation of Plasmas (Santa Barbara, California, USA, 1998), 248–251

[20] A. A. Batischeva, O. V. Batischev, A. S. Kholodov, “Unstructured adaptive grid and grid-free methods for the edge Plasma fluid simulations”, J. Plasma Physics, 61:5 (1999), 701–722 | DOI

[21] A. E. Evdokimov, A. S. Kholodov, “Kvazistatsionarnaia prostranstvenno-raspredelennaia model zamknutogo krovoobrashcheniia organizma cheloveka”, Kompiuternye modeli I progress meditsyny, Nauka, M., 2001, 164–193 | MR | Zbl

[22] S. S. Simakov, A. S. Kholodov, A. V. Evdokimov, Y. F. Kholodov, “Matter transport simulations using 2D model of peripheral circulation coupled with the model of large vessels”, Proceedings of II International Conference On Computational Bioengineering (Lisbon, Portugal, September 14–16, 2005), v. 1, eds. H. Rodrigues et al., IST Press, 2005, 479–490

[23] S. S. Simakov, A. S. Kholodov, A. V. Evdokimov, Ia. A. Kholodov, “Numerical simulation of cardiovascular diseases and global matter transport”, Proceedings of the International Conference Advanced Information and Telemedicine Technologies for Health, AITTH'2005 (Minsk, Belarus, November 8–10, 2005), v. 2, 188–192

[24] S. S. Simakov, A. S. Kholodov, Ia. A. Kholodov et al., “Global dynamical model of the cardiovascular system”, Proceedings of the III European Conference on Computational Mechanics, eds. C. A. Mota Soares et al., Springer, 2006, 1464.1–1464.9

[25] S. S. Simakov, A. S. Kholodov, Ia. A. Kholodov, K. M. Perfilov, “Heart valve dynamics in the model of global circulation”, Proceedings of the III Asian Pacific Congress on Computational Mechanics (2007), 286718.1–286718.7

[26] A. E. Evdokimov, A. S. Kholodov, S. S. Simakov, “Metody rascheta globalnogo krovotoka v organizme cheloveka s ispolzovaniem geterogennykh vychislitelnykh modelei”, Meditsina v zerkale informatiki, eds. O. M. Belotserkovskii, A. S. Kholodov, Nauka, M., 2008, 76–110 | Zbl