Numerical simulation of the high-speed impact of two metal plates
Matematičeskoe modelirovanie, Tome 28 (2016) no. 2, pp. 19-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of the numerical simulation dynamic processes occurring in the high-speed impact of the two metal plates are investigated. The calculations showed the presence of the Rayleigh–Taylor instability, growing at the impact boundary metals. The comparative characteristic of the metal deformation processes in the spatial case with different equations of state is given.
Mots-clés : RTI
Keywords: high-speed impact of metals, mathematical modeling, software package.
@article{MM_2016_28_2_a2,
     author = {O. M. Belotserkovsky and S. V. Fortova and O. V. Troshkin and A. P. Pronina and I. V. Eriklintsev and S. A. Kozlov},
     title = {Numerical simulation of the high-speed impact of two metal plates},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {19--30},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_2_a2/}
}
TY  - JOUR
AU  - O. M. Belotserkovsky
AU  - S. V. Fortova
AU  - O. V. Troshkin
AU  - A. P. Pronina
AU  - I. V. Eriklintsev
AU  - S. A. Kozlov
TI  - Numerical simulation of the high-speed impact of two metal plates
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 19
EP  - 30
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_2_a2/
LA  - ru
ID  - MM_2016_28_2_a2
ER  - 
%0 Journal Article
%A O. M. Belotserkovsky
%A S. V. Fortova
%A O. V. Troshkin
%A A. P. Pronina
%A I. V. Eriklintsev
%A S. A. Kozlov
%T Numerical simulation of the high-speed impact of two metal plates
%J Matematičeskoe modelirovanie
%D 2016
%P 19-30
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_2_a2/
%G ru
%F MM_2016_28_2_a2
O. M. Belotserkovsky; S. V. Fortova; O. V. Troshkin; A. P. Pronina; I. V. Eriklintsev; S. A. Kozlov. Numerical simulation of the high-speed impact of two metal plates. Matematičeskoe modelirovanie, Tome 28 (2016) no. 2, pp. 19-30. http://geodesic.mathdoc.fr/item/MM_2016_28_2_a2/

[1] A. A. Deribas, Fizika uprochneniia i svarki vzryvom, Nauka, Novosibirsk, 1972, 188 pp.

[2] I. V. Yakovlev, “Neustojchivost granitsy razdela soudariaiushchikhsia poverkhnostej metallov”, Fizika goreniiy i vzryva, 9:3 (1973), 447

[3] S. K. Godunov, A. A. Deribas, N. S. Kozin, “Volnoobrazovanie pri svarke vzryvom”, Prikladnaya mekhanika i tekhnicheskaia fizika, 1971, no. 3, 63–72

[4] A. A. Deribas, V. S. Zakharov, T. M. Sobolenko, T. S. Teslenko, “O perenose poverkhnostnogo relefa v metallakh udarnymi volnami”, Fizika goreniia i vzryva, 10:6 (1974), 931 | Zbl

[5] I. V. Iakovlev, G. E. Kuzmin, V. V. Paj (sost., perev. i redak.), Volnoobrazovanie pri kosykh soudareniiakh, In-t discr. matem. i inform., Novosibirsk, 2000, 222 pp.

[6] V. V. Demchenko, V. A. Sergeev, “Neustojchivost poverkhnosti soudareniia pri vysokoskorostnom udare”, MZHG, 2003, no. 6, 11–121

[7] O. M. Belotserkovskij, A. M. Oparin, Chislennyj eksperiment: ot poriadka k khaosu, Nauka, M., 2000, 106–130 | Zbl

[8] A. V. Bushman, I. V. Lomonosov, V. E. Fortov, Modeli shirokodiapazonnykh uravnenij sostoianiia veshchestv pri vysokikh plotnostiakh energii, Preprint No 6-287, IVTAN, M., 1989, 44 pp.

[9] S. V. Fortova, L. M. Kraginskij, A. V. Chikitkin, E. I. Oparina, “Software Package for Solving Hyperbolic-Type Equation”, Math. Mod. Comp. Sim., 5:6 (2013), 607–616 | DOI | MR

[10] S. V. Fortova, “Comparative Analysis of Eddy Cascade Formation in Various Turbulent Problems”, Computational Mathematics and Mathematical Physics, 55:2 (2015), 298–304 | DOI | MR | Zbl

[11] S. V. Fortova, “Vikhrevoj kaskad neustojchivostej v razlichnykh zadachakh gazodinamiki”, Vestnik KBGU, 4:1 (2014), 34–39

[12] L. D. Landau, E. M. Lifshits, Theory of elasticity, Pergamon Press, London–New York, 1959 | MR

[13] L. G. Lojtsianskij, Mekchanika zhidkosti i gaza, Nauka, M., 1978 | MR

[14] V. M. Kovenia, N. N. Ianenko, Metod rasshchepleniia v zadachakh gazovoj dinamiki, Nauka, Novosibirsk, 1981 | MR

[15] P. L. Roe, “Approximate Riemann solvers, parameter vectors and difference scheme”, J. Comput. Phys., 43 (1981), 357–372 | DOI | MR | Zbl

[16] K. M. Magomedov, A. S. Kholodov, Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988 | MR