Numerical analysis of turbulence decay in momentumless wakes behind the sphere and the prolate body of revolution
Matematičeskoe modelirovanie, Tome 28 (2016) no. 1, pp. 78-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical analysis of turbulent flow in momentumless wakes behind the sphere and the prolate body of revolution in homogeneous and linearly stratified fluids was carried out. The results of numerical investigation based on modern turbulence models of second and third orders with known theoretical and experimental data are consistent. We showed proximity of these currents on some properties including self-similar decay of turbulence in a far wake in a homogeneous medium and the relationship between the second and third invariants of the reynolds stress tensor. We also considered the problem of interaction between the two turbulized regions generated by the motion of the sphere and the prolate body in a homogeneous medium.
Keywords: numerical modeling, semi-empirical models, the turbulent wake, turbulence anisotropy
Mots-clés : invariants.
@article{MM_2016_28_1_a5,
     author = {O. F. Voropaeva and Yu. V. Bobkova},
     title = {Numerical analysis of turbulence decay in momentumless wakes behind the sphere and the prolate body of revolution},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {78--96},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_1_a5/}
}
TY  - JOUR
AU  - O. F. Voropaeva
AU  - Yu. V. Bobkova
TI  - Numerical analysis of turbulence decay in momentumless wakes behind the sphere and the prolate body of revolution
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 78
EP  - 96
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_1_a5/
LA  - ru
ID  - MM_2016_28_1_a5
ER  - 
%0 Journal Article
%A O. F. Voropaeva
%A Yu. V. Bobkova
%T Numerical analysis of turbulence decay in momentumless wakes behind the sphere and the prolate body of revolution
%J Matematičeskoe modelirovanie
%D 2016
%P 78-96
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_1_a5/
%G ru
%F MM_2016_28_1_a5
O. F. Voropaeva; Yu. V. Bobkova. Numerical analysis of turbulence decay in momentumless wakes behind the sphere and the prolate body of revolution. Matematičeskoe modelirovanie, Tome 28 (2016) no. 1, pp. 78-96. http://geodesic.mathdoc.fr/item/MM_2016_28_1_a5/

[1] S. B. Pope, Turbulent flows, Cambridge Univ. Press, Cambridge, 2000, 771 pp. | MR | Zbl

[2] J. Piquet, Turbulent flows: Models and Physics, Springer-Verlag, Berlin–Heidelberg, 1999, 761 pp. | MR | Zbl

[3] P. Meunier, G. R. Spedding, “Stratified propelled wakes”, J. Fluid Mech., 552 (2006), 229–256 | DOI | Zbl

[4] M. B. de Stadler, S. Sarkar, “Simulation of a propelled wake with moderate excess momentum in a stratified fluid”, J. Fluid Mech., 692 (2012), 28–52 | DOI | Zbl

[5] O. F. Voropaeva, O. A. Druzhinin, G. G. Chernykh, “Numerical models of momentumless turbulent wake dynamics in a linearly stratified medium”, Computational technologies, 18:5 (2013), 41–57

[6] A. S. Monin, A. M. Yaglom, Statistical fluid mechanics, v. 1, Mechanics of turbulence, MIT Press, Cambridge, Mass., 1971, 782 pp.

[7] J. T. Lin, Y. H. Pao, “Wakes in stratified fluids”, Annu. Rev. Fluid Mech., 11 (1979), 317–336 | DOI

[8] N. V. Aleksenko, V. A. Kostomakha, “Experimental study of an axisymmetric nonimpulsive turbulent jet”, J. Applied Mechanics and Technical Physics, 28:1 (1987), 60–64 | DOI

[9] G. G. Chernykh, O. F. Voropayeva, “Numerical modeling of momentumless turbulent wake dynamics in a linearly stratified medium”, Computers and Fluids, 28:3 (1999), 281–306 | DOI | Zbl

[10] O. F. Voropayeva, “Anisotropic Turbulence Decay in a Far Momentumless Wake in a Stratified Medium”, Mathematical Models and Computer Simulations, 1:5 (2009), 605–619 | DOI | MR

[11] O. F. Vasil'ev, O. F. Voropaeva, G. G. Chernykh, “Numerical modeling of anisotropic decay of a distant turbulent wake behind a self-propelled body in a linearly stratified medium”, Doklady Physics, 54:6 (2009), 301–305 | DOI | MR

[12] G. G. Chernykh, A. G. Demenkov, “Numerical models of jet flows of a viscous incompressible fluid”, RJNAMM, 12:2 (1997), 111–125 | MR | Zbl

[13] O. F. Voropaeva, “Chislennoe modelirovanie bezympulsnykh turbulentnykh sledov za sferoy”, Vychislitelnye tehknologii, 6:4-2 (2001), 188–194

[14] O. F. Voropaeva, “The numerical investigation of momentumless turbulent wakes behind sphere based on semi-empirical turbulence models of second order”, Comput. technologies, 7:2 (2002), 11–23 | MR

[15] O. F. Voropayeva, “Dynamics of a far momentumless turbulent wake in passively stratified media”, RJNAMM, 19:1 (2004), 83–102 | MR | Zbl

[16] O. F. Voropaeva, “Ierarkhiia poluempiricheskikh modeley turbulentnosti vtorogo i tret'ego poryadka v raschetakh bezympulsnykh sledov za telami vrashcheniia”, Matematicheskoe modelirovanie, 19:3 (2007), 29–51 | MR

[17] V. Maderich, S. Konstantinov, “Asymptotic and numerical analysis of momentumless turbulent wakes”, Fluid Dyn. Res., 42 (2010), 045503, 25 pp. | DOI | Zbl

[18] O. V. Kaptsov, A. V. Schmidt, “Application of the B-determining equations method to one problem of free turbulence”, SIGMA, 8 (2012), 073, 10 pp. | MR | Zbl

[19] W. Kollmann (ed.), Prediction methods for turbulent flows, Hemisphere Publishing Corp., Washington, 1980, 468 pp.

[20] B. B. Ilyushin, “Higher-moment diffusion in stable stratification”, Closure Strategies for Turbulent and Transition Flows, Cambridge Univ. Press, Cambridge, 2002, 424–448 | DOI | MR | Zbl

[21] O. F. Voropaeva, N. P. Moshkin, G. G. Chernykh, “Vnutrennie volny, generiruemye turbulentnymi sledami za buksiruemym i samodvizhushchimsia telami v lineyno stratifitsirovannoy srede”, Matematicheskoe modelirovanie, 12:10 (2000), 77–94 | MR | Zbl

[22] S. Hassid, “Collapse of turbulent wakes in stably stratified media”, J. Hydronautics, 14:1 (1980), 25–32 | DOI