Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_1_a4, author = {Yu. V. Klochkov and A. P. Nikolaev and T. A. Kiseleva}, title = {Comparison of the scalar and vector form {FEM} for example elliptic cylinders}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {65--77}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_1_a4/} }
TY - JOUR AU - Yu. V. Klochkov AU - A. P. Nikolaev AU - T. A. Kiseleva TI - Comparison of the scalar and vector form FEM for example elliptic cylinders JO - Matematičeskoe modelirovanie PY - 2016 SP - 65 EP - 77 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_1_a4/ LA - ru ID - MM_2016_28_1_a4 ER -
%0 Journal Article %A Yu. V. Klochkov %A A. P. Nikolaev %A T. A. Kiseleva %T Comparison of the scalar and vector form FEM for example elliptic cylinders %J Matematičeskoe modelirovanie %D 2016 %P 65-77 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2016_28_1_a4/ %G ru %F MM_2016_28_1_a4
Yu. V. Klochkov; A. P. Nikolaev; T. A. Kiseleva. Comparison of the scalar and vector form FEM for example elliptic cylinders. Matematičeskoe modelirovanie, Tome 28 (2016) no. 1, pp. 65-77. http://geodesic.mathdoc.fr/item/MM_2016_28_1_a4/
[1] V. V. Novozhilov, K. F. Chernykh, E. I. Mikhailovskii, Lineinaia teoriia tonkikh obolochek, Politekhnika, L., 1991, 656 pp.
[2] K. Z. Galimov, V. N. Paimushin, Teoriia obolochek slozhnoi geometrii, Izd-vo Kazansk. gos. un-ta, Kazan, 1985, 164 pp.
[3] E. I. Grigoliuk, V. V. Kabanov, Ustoichivost obolochek, Nauka, M., 1978, 360 pp. | MR
[4] E. N. Grigoliuk, E. A. Lopanitsyn, Konechnye progiby, ustoichivost i zakriticheskoe povedenie tonkikh pologikh obolochek, MGTU «MAMI», M., 2004, 162 pp.
[5] V. L. Iakushev, Nelineinye deformatsii i ustoichivost tonkikh obolochek, Nauka, M., 2004, 276 pp.
[6] V. G. Bazhenov, “Eksperimentalno-raschetnyi metod issledovaniia bolshikh uprugoplasticheskikh deformatsii tsilindricheskikh obolochek pri rastiazhenii do razryva i postroenie diagramm deformirovaniia pri neodnorodnom napriazhenno-deformirovannom sostoianii”, Prikl. mekh. i tekhn. fiz., 54:1 (2013), 116–124 | MR | Zbl
[7] A. I. Golovanov, O. N. Tiuleneva, A. F. Shigabutdinov, Metod konechnykh elementov v statike i dinamike tonkostennykh konstruktsii, Fizmatlit, M., 2006, 392 pp.
[8] N. M. Iakupov, M. N. Serazutdinov, Raschet uprugikh tonkostennykh konstruktsii slozhnoi geometrii, IMNRAN, Kazan, 1993, 206 pp.
[9] V. A. Postnov, I. Ia. Kharkhurim, Metod konechnykh elementov v raschetakh sudovykh konstruktsii, Sudostroenie, L., 1974, 344 pp.
[10] K.-J. Bathe, Finite Element Procedures, Prentice Hall, 1996
[11] A. P. Nikolaev, Iu. V. Klochkov, A. P. Kiselev, N. A. Gureeva, Vektornaia interpoliatsiia polei peremeshchenii v raschetakh obolochek, FGBOU VPO Volgogradskii GAU, Volgograd, 2012, 244 pp.
[12] L. I. Sedov, Mekhanika sploshnoi sredy, v. 1, Nauka, M., 1976, 536 pp.
[13] Iu. V. Klochkov, A. P. Nikolaev, T. A. Kiseleva, “Sravnenie napriazhenii, vychislennykh na osnove skaliarnoi i vektornoi interpoliatsii MKE v sochlenennykh obolochkakh iz raznorodnykh materialov”, Stroitelnaia mekhanika i raschet sooruzhenii, 2013, no. 5(250), 70–76
[14] N. M. Beliaev, Soprotivlenie materialov, Nauka, M., 1976, 608 pp.