Comparison of the scalar and vector form FEM for example elliptic cylinders
Matematičeskoe modelirovanie, Tome 28 (2016) no. 1, pp. 65-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

The algorithm of forming the stiffness matrix curvilinear quadrilateral finite element as a fragment of the middle surface of an elliptic cylinder with eighteen degrees of freedom in the node is presented. When implementing a finite-element procedure two versions of approximation of the unknown quantities are implemented: scalar and vector. Numerical examples proved that the vector approximation had fundamental advantages compared with the scalar approximation in the calculation of arbitrary shells with significant gradients of curvature of the middle surface or allowing the displacement as a rigid body.
Keywords: approximation vector, scalar approximation, finite element, elliptic cylinder, displacement as a rigid body shell.
@article{MM_2016_28_1_a4,
     author = {Yu. V. Klochkov and A. P. Nikolaev and T. A. Kiseleva},
     title = {Comparison of the scalar and vector form {FEM} for example elliptic cylinders},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--77},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_1_a4/}
}
TY  - JOUR
AU  - Yu. V. Klochkov
AU  - A. P. Nikolaev
AU  - T. A. Kiseleva
TI  - Comparison of the scalar and vector form FEM for example elliptic cylinders
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 65
EP  - 77
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_1_a4/
LA  - ru
ID  - MM_2016_28_1_a4
ER  - 
%0 Journal Article
%A Yu. V. Klochkov
%A A. P. Nikolaev
%A T. A. Kiseleva
%T Comparison of the scalar and vector form FEM for example elliptic cylinders
%J Matematičeskoe modelirovanie
%D 2016
%P 65-77
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_1_a4/
%G ru
%F MM_2016_28_1_a4
Yu. V. Klochkov; A. P. Nikolaev; T. A. Kiseleva. Comparison of the scalar and vector form FEM for example elliptic cylinders. Matematičeskoe modelirovanie, Tome 28 (2016) no. 1, pp. 65-77. http://geodesic.mathdoc.fr/item/MM_2016_28_1_a4/

[1] V. V. Novozhilov, K. F. Chernykh, E. I. Mikhailovskii, Lineinaia teoriia tonkikh obolochek, Politekhnika, L., 1991, 656 pp.

[2] K. Z. Galimov, V. N. Paimushin, Teoriia obolochek slozhnoi geometrii, Izd-vo Kazansk. gos. un-ta, Kazan, 1985, 164 pp.

[3] E. I. Grigoliuk, V. V. Kabanov, Ustoichivost obolochek, Nauka, M., 1978, 360 pp. | MR

[4] E. N. Grigoliuk, E. A. Lopanitsyn, Konechnye progiby, ustoichivost i zakriticheskoe povedenie tonkikh pologikh obolochek, MGTU «MAMI», M., 2004, 162 pp.

[5] V. L. Iakushev, Nelineinye deformatsii i ustoichivost tonkikh obolochek, Nauka, M., 2004, 276 pp.

[6] V. G. Bazhenov, “Eksperimentalno-raschetnyi metod issledovaniia bolshikh uprugoplasticheskikh deformatsii tsilindricheskikh obolochek pri rastiazhenii do razryva i postroenie diagramm deformirovaniia pri neodnorodnom napriazhenno-deformirovannom sostoianii”, Prikl. mekh. i tekhn. fiz., 54:1 (2013), 116–124 | MR | Zbl

[7] A. I. Golovanov, O. N. Tiuleneva, A. F. Shigabutdinov, Metod konechnykh elementov v statike i dinamike tonkostennykh konstruktsii, Fizmatlit, M., 2006, 392 pp.

[8] N. M. Iakupov, M. N. Serazutdinov, Raschet uprugikh tonkostennykh konstruktsii slozhnoi geometrii, IMNRAN, Kazan, 1993, 206 pp.

[9] V. A. Postnov, I. Ia. Kharkhurim, Metod konechnykh elementov v raschetakh sudovykh konstruktsii, Sudostroenie, L., 1974, 344 pp.

[10] K.-J. Bathe, Finite Element Procedures, Prentice Hall, 1996

[11] A. P. Nikolaev, Iu. V. Klochkov, A. P. Kiselev, N. A. Gureeva, Vektornaia interpoliatsiia polei peremeshchenii v raschetakh obolochek, FGBOU VPO Volgogradskii GAU, Volgograd, 2012, 244 pp.

[12] L. I. Sedov, Mekhanika sploshnoi sredy, v. 1, Nauka, M., 1976, 536 pp.

[13] Iu. V. Klochkov, A. P. Nikolaev, T. A. Kiseleva, “Sravnenie napriazhenii, vychislennykh na osnove skaliarnoi i vektornoi interpoliatsii MKE v sochlenennykh obolochkakh iz raznorodnykh materialov”, Stroitelnaia mekhanika i raschet sooruzhenii, 2013, no. 5(250), 70–76

[14] N. M. Beliaev, Soprotivlenie materialov, Nauka, M., 1976, 608 pp.