Numerical simulation of flow over vacuum gauge using of direct simulation Monte-Carlo method
Matematičeskoe modelirovanie, Tome 28 (2016) no. 11, pp. 126-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

Upper atmosphere probe is under the consideration. Method of atmosphere parameters treatment of density data received by vacuum gauge located behind the cellular shield is constructed. Molecules interaction with cellular shield as with semipermeable membrane simplified algorithm was proposed within the framework of direct simulation Monte-Carlo method (DSMC). Flow over the probe numerical simulation was done for the purpose to get connection between probe data and undisturbed atmosphere parameters.
Keywords: direct simulation Monte-Carlo method, Earth high atmosphere probe, rarefied gases, vacuum gauge, hypersonic flow, meteoprobe, meteorocket.
@article{MM_2016_28_11_a8,
     author = {S. V. Zhurin and A. N. Krylov and A. L. Kusov and O. V. Shtyrkov and V. A. Ushkov},
     title = {Numerical simulation of flow over vacuum gauge using of direct simulation {Monte-Carlo} method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {126--138},
     publisher = {mathdoc},
     volume = {28},
     number = {11},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_11_a8/}
}
TY  - JOUR
AU  - S. V. Zhurin
AU  - A. N. Krylov
AU  - A. L. Kusov
AU  - O. V. Shtyrkov
AU  - V. A. Ushkov
TI  - Numerical simulation of flow over vacuum gauge using of direct simulation Monte-Carlo method
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 126
EP  - 138
VL  - 28
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_11_a8/
LA  - ru
ID  - MM_2016_28_11_a8
ER  - 
%0 Journal Article
%A S. V. Zhurin
%A A. N. Krylov
%A A. L. Kusov
%A O. V. Shtyrkov
%A V. A. Ushkov
%T Numerical simulation of flow over vacuum gauge using of direct simulation Monte-Carlo method
%J Matematičeskoe modelirovanie
%D 2016
%P 126-138
%V 28
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_11_a8/
%G ru
%F MM_2016_28_11_a8
S. V. Zhurin; A. N. Krylov; A. L. Kusov; O. V. Shtyrkov; V. A. Ushkov. Numerical simulation of flow over vacuum gauge using of direct simulation Monte-Carlo method. Matematičeskoe modelirovanie, Tome 28 (2016) no. 11, pp. 126-138. http://geodesic.mathdoc.fr/item/MM_2016_28_11_a8/

[1] Atmosfera standartnaia. Parametry, GOST 4401-81, IPK Izd-vo standartov, M., 2004

[2] S. V. Zhurin, Yu. N. Gvozdev, A. D. Lykov, “Obrabotka i analiz dannykh naturnogo eksperimenta po opredeleniiu traektornykh kharakteristik kruglogo parashiuta na bolshikh vysotakh”, Nauchnyi vestnik MGTU GA, 2015, no. 211, 65–70

[3] S. V. Zhurin, S. V. Leonov, Yu. G. Mehonoshin, “Obrabotka i analiz dannykh naturnogo eksperimenta po opredeleniiu kharakteristik dvizheniia kruglogo parashiuta po traektorii v vide spirali na bolshikh vysotakh”, Nauchnyi vestnik MGTU GA, 2015, no. 211, 71–78

[4] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford, 1994, 458 pp. | MR

[5] A. L. Kusov, “Chislennoe modelirovanie obtekaniia tsilindra so sfericheskim noskom metodom priamogo statisticheskogo modelirovaniia Monte-Karlo”, Matematicheskoe modelirovanie, 27:12 (2015), 33–47

[6] B. A. Kiryutin, G. A. Tirskii, “Slip boundary conditions on a catalytic surface in a multicomponent gas flow”, Fluid dynamics, 31:1 (1996), 134–143 | DOI | Zbl

[7] M. N. Kogan, N. K. Makashev, “Role of the Knudsen layer in the theory of heterogeneous reactions and in flows with surface reactions”, Fluid dynamics, 6:6 (1971), 913–920 | DOI

[8] G. A. Bird, M. A. Gallis, J. R. Torczynski, D. J. Rader, “Accuracy and Efficiency of the Sophisticated Direct Simulation Monte Carlo Algorithm for Simulating Non-continuum Gas Flows”, The Physics of Fluids, 21 (2009) | DOI | Zbl

[9] A. V. Kashkovskii, Razrabotka i primenenie programmnykh sistem dlia resheniia zadach vysotnoi aerodinamiki, Dissertatsiia kand. tekh. nauk, Institut teoreticheskoi i prikladnoi mekhaniki im. S. A. Khristianovicha, Novosibirsk, 2008, 225 pp.

[10] M. S. Ivanov, G. N. Markelov, S. F. Gimelshein, “Statistical simulation of the transition between regular and Mach reflection in steady flows”, Comput. Math. Appl., 35 (1998), 113–126 | DOI | MR

[11] Ye. A. Bondar, A. A. Shevyrin, Y. S. Chen, A. N. Shumakova, A. V. Kashkovsky, M. S. Ivanov, “Direct Monte Carlo simulation of high-temperature chemical reactions in air”, Thermophysics and Aeromechanics, 20:5 (2013), 553–564 | DOI

[12] S. Gimelshein, I. Wysong, Y. Bondar, M. Ivanov, “Accuracy analysis of DSMC chemistry models applied to a normal shock wave”, AIP Conf. Proc., 1501, 2012, 637–643 | DOI

[13] A. L. Kusov, V. V. Lunev, “Primenenie metoda priamogo statisticheskogo modelirovaniia MonteKarlo pri reshenii zadachi o nestatsionarnom razlete razrezhennogo gaza v sluchae ego ispareniia s peregretoi poverkhnosti materiala v vakuum”, Kosmonavtika i raketostroenie, 2010, no. 1(58), 36–45

[14] K. Koura, “Null-collision Technique in the Direct Simulation Monte-Carlo Technique”, The Physics of Fluids, 29 (1986), 3509–3511 | DOI

[15] T. R. Deschenes, T. D. Holman, I. D. Boyd, “Effects of Rotational Energy Relaxation in a Modular Particle-Continuum Method”, Journal of thermophysics and heat transfer, 25:2 (2011), 218–227 | DOI

[16] M. Rapp, J. Gumbel, F.-J. Lubken, “Absolute density measurements in the middle atmosphere”, Annales Geophysicae, European Geosciences Union (EGU), 19:5 (2001), 571–580

[17] V. V. Lunev, Real gas flows with high velocities, CRC Press, Boca Raton, USA, 2009, 751 pp.