Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_11_a7, author = {E. A. Ayryan and A. D. Egorov and D. S. Kulyabov and V. B. Malyutin and L. A. Sevastyanov}, title = {Application of functional integrals to stochastic equations}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {113--125}, publisher = {mathdoc}, volume = {28}, number = {11}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_11_a7/} }
TY - JOUR AU - E. A. Ayryan AU - A. D. Egorov AU - D. S. Kulyabov AU - V. B. Malyutin AU - L. A. Sevastyanov TI - Application of functional integrals to stochastic equations JO - Matematičeskoe modelirovanie PY - 2016 SP - 113 EP - 125 VL - 28 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_11_a7/ LA - ru ID - MM_2016_28_11_a7 ER -
%0 Journal Article %A E. A. Ayryan %A A. D. Egorov %A D. S. Kulyabov %A V. B. Malyutin %A L. A. Sevastyanov %T Application of functional integrals to stochastic equations %J Matematičeskoe modelirovanie %D 2016 %P 113-125 %V 28 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2016_28_11_a7/ %G ru %F MM_2016_28_11_a7
E. A. Ayryan; A. D. Egorov; D. S. Kulyabov; V. B. Malyutin; L. A. Sevastyanov. Application of functional integrals to stochastic equations. Matematičeskoe modelirovanie, Tome 28 (2016) no. 11, pp. 113-125. http://geodesic.mathdoc.fr/item/MM_2016_28_11_a7/
[1] D. S. Kuliabov, A. V. Demidova, “Vvedenie soglasovannogo stokhasticheskogo chlena v uravnenie modeli rosta populiatsii”, Vestnik RUDN. Seriia «Matematika. Informatika. Fizika», 2012, no. 3, 69–78
[2] A. V. Demidova, “Uravneniia dinamiki populiatsii v forme stokhasticheskikh differentsialnykh uravnenii”, Vestnik RUDN. Seriia «Matematika. Informatika. Fizika, 2013, no. 1, 67–76
[3] P. E. Kloeden, E. Platen, Numerical solution of stochastic differential equations, Springer-Verlag, 1992 | MR | Zbl
[4] D. F. Kuznetsov, Chislennoe integrirovanie stokhasticheskikh differentsialnykh uravnenii, S.-Peterburg, 2001
[5] H. Risken, The Fokker–Plank equation: methods of solution and applications, Springer-Verlag, 1984 | MR
[6] R. P. Feynman, A. R. Hibbs, Quantum mechanics and path integrals, McGraw-Hill, New York, 1965 | MR | Zbl
[7] H. Kleinert, Path integrals in quantum mechanics, statistics polymer physics, and financial markets, World Scientific Publishing, Singapore, 2004 | MR | Zbl
[8] N. N. Bogoliubov, D. V. Shirkov, Vvedenie v teoriiu kvantovannykh polei, M., 1976
[9] J. Glimm, A. Jaffe, Quantum Physics. A Functional Integral Point of View, Springer-Verlag, Berlin–Heidelberg–New York, 1981, 417 pp. | MR | Zbl
[10] A. D. Egorov, E. P. Zhidkov, Iu. Iu. Lobanov, Vvedenie v teoriiu i prilozheniia funktsionalnogo integrirovaniia, Fizmatlit, M., 2006
[11] F. Langouche, D. Roekaerts, E. Tirapegui, Functional integration and semi-classical expansions, D. Reidel Pub. Co., Dordrecht, 1982 | MR
[12] Horacio S. W., Application of path integration to stochastic process: an introduction, World Scientific Publishing Company, 2013
[13] L. Onsager, S. Machlup, Phys. Rev., 91 (1953), 1505 | DOI | MR | Zbl
[14] J. W. Lamperti, “Semi-stable stochastic processes”, Trans. Amer. Math. Soc., 104 (1962), 62–78 | DOI | MR | Zbl
[15] J. H. Wilkinson, The algebraic eigenvalue problem, Oxford, 1965 | MR
[16] A. D. Egorov, P. I. Sobolevskii, L. A. Ianovich, Priblizhennye metody vychisleniia kontinualnykh integralov, Nauka i tekhnika, M., 1985
[17] A. D. Egorov, P. I. Sobolevsky, L. A. Yanovich, Functional integrals: Approximate evaluation and applications, Kluwer Acad. Publ., Dordrecht, 1993 | MR | Zbl
[18] V. I. Krylov, V. V. Bobkov, P. I. Monastyrnyi, Vychislitelnye metody vysshei matematiki, v. 2, Minsk, 1975
[19] C. W. Gardiner, Handbook of Stochastic Methods: For Physics, Chemistry, and the Natural Sciences, 2 Sub edition, Springer-Verlag, 1986, 442 pp. | MR
[20] A. V. Demidova, M. N. Gevorkian, A. D. Egorov, D. S. Kuliabov, A. V. Korolkova, L. A. Sevastianov, “Vliianie stokhastizatsii na odnoshagovye modeli”, Vestnik RUDN. Seriia «Matematika. Informatika. Fizika», 2014, no. 1, 71–85
[21] G. A. Gottwald, J. Harlim, “The role of additive and multiplicative noise in filtering complex dynamical systems”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 469 (2013) | MR