Application of functional integrals to stochastic equations
Matematičeskoe modelirovanie, Tome 28 (2016) no. 11, pp. 113-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

Representation of the probability density function (PDF) and other quantities, describing solution of stochastic differential equation, by means of functional integral is considered in this paper. Method of approximate evaluation of appearing functional integrals is presented. Onsager–Machlup functionals are used to represent PDF by means of functional integral. Using these functionals the expression for PDF on small time interval $\Delta t$ can be written. This expression is true up to terms having order higher than the first in comparison with $\Delta t$. Method of approximate evaluation of appearing functional integrals is considered. This method is based on expansion of action along classical path. As an example the application of proposed method to evaluation of some quantities for solution of equation for the Cox Ingersoll Ross type model is considered.
Keywords: stochastic differential equations, Onsager–Machlup functionals, functional integrals.
@article{MM_2016_28_11_a7,
     author = {E. A. Ayryan and A. D. Egorov and D. S. Kulyabov and V. B. Malyutin and L. A. Sevastyanov},
     title = {Application of functional integrals to stochastic equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {113--125},
     publisher = {mathdoc},
     volume = {28},
     number = {11},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_11_a7/}
}
TY  - JOUR
AU  - E. A. Ayryan
AU  - A. D. Egorov
AU  - D. S. Kulyabov
AU  - V. B. Malyutin
AU  - L. A. Sevastyanov
TI  - Application of functional integrals to stochastic equations
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 113
EP  - 125
VL  - 28
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_11_a7/
LA  - ru
ID  - MM_2016_28_11_a7
ER  - 
%0 Journal Article
%A E. A. Ayryan
%A A. D. Egorov
%A D. S. Kulyabov
%A V. B. Malyutin
%A L. A. Sevastyanov
%T Application of functional integrals to stochastic equations
%J Matematičeskoe modelirovanie
%D 2016
%P 113-125
%V 28
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_11_a7/
%G ru
%F MM_2016_28_11_a7
E. A. Ayryan; A. D. Egorov; D. S. Kulyabov; V. B. Malyutin; L. A. Sevastyanov. Application of functional integrals to stochastic equations. Matematičeskoe modelirovanie, Tome 28 (2016) no. 11, pp. 113-125. http://geodesic.mathdoc.fr/item/MM_2016_28_11_a7/

[1] D. S. Kuliabov, A. V. Demidova, “Vvedenie soglasovannogo stokhasticheskogo chlena v uravnenie modeli rosta populiatsii”, Vestnik RUDN. Seriia «Matematika. Informatika. Fizika», 2012, no. 3, 69–78

[2] A. V. Demidova, “Uravneniia dinamiki populiatsii v forme stokhasticheskikh differentsialnykh uravnenii”, Vestnik RUDN. Seriia «Matematika. Informatika. Fizika, 2013, no. 1, 67–76

[3] P. E. Kloeden, E. Platen, Numerical solution of stochastic differential equations, Springer-Verlag, 1992 | MR | Zbl

[4] D. F. Kuznetsov, Chislennoe integrirovanie stokhasticheskikh differentsialnykh uravnenii, S.-Peterburg, 2001

[5] H. Risken, The Fokker–Plank equation: methods of solution and applications, Springer-Verlag, 1984 | MR

[6] R. P. Feynman, A. R. Hibbs, Quantum mechanics and path integrals, McGraw-Hill, New York, 1965 | MR | Zbl

[7] H. Kleinert, Path integrals in quantum mechanics, statistics polymer physics, and financial markets, World Scientific Publishing, Singapore, 2004 | MR | Zbl

[8] N. N. Bogoliubov, D. V. Shirkov, Vvedenie v teoriiu kvantovannykh polei, M., 1976

[9] J. Glimm, A. Jaffe, Quantum Physics. A Functional Integral Point of View, Springer-Verlag, Berlin–Heidelberg–New York, 1981, 417 pp. | MR | Zbl

[10] A. D. Egorov, E. P. Zhidkov, Iu. Iu. Lobanov, Vvedenie v teoriiu i prilozheniia funktsionalnogo integrirovaniia, Fizmatlit, M., 2006

[11] F. Langouche, D. Roekaerts, E. Tirapegui, Functional integration and semi-classical expansions, D. Reidel Pub. Co., Dordrecht, 1982 | MR

[12] Horacio S. W., Application of path integration to stochastic process: an introduction, World Scientific Publishing Company, 2013

[13] L. Onsager, S. Machlup, Phys. Rev., 91 (1953), 1505 | DOI | MR | Zbl

[14] J. W. Lamperti, “Semi-stable stochastic processes”, Trans. Amer. Math. Soc., 104 (1962), 62–78 | DOI | MR | Zbl

[15] J. H. Wilkinson, The algebraic eigenvalue problem, Oxford, 1965 | MR

[16] A. D. Egorov, P. I. Sobolevskii, L. A. Ianovich, Priblizhennye metody vychisleniia kontinualnykh integralov, Nauka i tekhnika, M., 1985

[17] A. D. Egorov, P. I. Sobolevsky, L. A. Yanovich, Functional integrals: Approximate evaluation and applications, Kluwer Acad. Publ., Dordrecht, 1993 | MR | Zbl

[18] V. I. Krylov, V. V. Bobkov, P. I. Monastyrnyi, Vychislitelnye metody vysshei matematiki, v. 2, Minsk, 1975

[19] C. W. Gardiner, Handbook of Stochastic Methods: For Physics, Chemistry, and the Natural Sciences, 2 Sub edition, Springer-Verlag, 1986, 442 pp. | MR

[20] A. V. Demidova, M. N. Gevorkian, A. D. Egorov, D. S. Kuliabov, A. V. Korolkova, L. A. Sevastianov, “Vliianie stokhastizatsii na odnoshagovye modeli”, Vestnik RUDN. Seriia «Matematika. Informatika. Fizika», 2014, no. 1, 71–85

[21] G. A. Gottwald, J. Harlim, “The role of additive and multiplicative noise in filtering complex dynamical systems”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 469 (2013) | MR