The moment method of Lebesgue aggregation and spectrum recovery in particle transport problems
Matematičeskoe modelirovanie, Tome 28 (2016) no. 11, pp. 33-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of spectral moments that simplifies the calculation of nonmonotonic multiresonance spectra of neutrons or photons in the problems of nuclear technologies, radiating plasma and atmospheric radiation is developed. The particle distribution function is expanded in basis functions that depend on the particle energy and the resonance structure of the cross sections, and ensure fast convergence of the expansion. Efficient way of finding the series expansion coefficients (spectral moments) based on the solution of the transport equation for the Lebesgue distribution of particles on the system of Lebesgue sets is described. Fast convergence of the expansion is shown in test problems.
Mots-clés : particle transport, Lebesgue integral
Keywords: spectrum aggregation, spectrum recovery, method of moments, nuclear engeneering, radiating plasma.
@article{MM_2016_28_11_a2,
     author = {A. V. Shilkov},
     title = {The moment method of {Lebesgue} aggregation and spectrum recovery in particle transport problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--54},
     publisher = {mathdoc},
     volume = {28},
     number = {11},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_11_a2/}
}
TY  - JOUR
AU  - A. V. Shilkov
TI  - The moment method of Lebesgue aggregation and spectrum recovery in particle transport problems
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 33
EP  - 54
VL  - 28
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_11_a2/
LA  - ru
ID  - MM_2016_28_11_a2
ER  - 
%0 Journal Article
%A A. V. Shilkov
%T The moment method of Lebesgue aggregation and spectrum recovery in particle transport problems
%J Matematičeskoe modelirovanie
%D 2016
%P 33-54
%V 28
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_11_a2/
%G ru
%F MM_2016_28_11_a2
A. V. Shilkov. The moment method of Lebesgue aggregation and spectrum recovery in particle transport problems. Matematičeskoe modelirovanie, Tome 28 (2016) no. 11, pp. 33-54. http://geodesic.mathdoc.fr/item/MM_2016_28_11_a2/

[1] Uchenye zapiski Leningrad. universiteta, seria Matem. Nauki (Astron.), 1936, no. 6-1, 7–18

[2] K. Ia. Kondratyev, Radiative heat exchange in the atmosphere, Pergamon Press, London, 1965

[3] V. Ia. Goldin, B. N. Chetverushkin, “Effektivnyi metod resheniia uravneniia perenosa izlucheniia v nizkotemperaturnoi plazme”, Dokl. AN SSSR, 195:2 (1970), 315–317

[4] B. N. Chetverushkin, Matematicheskoe modelirovanie zadach dinamiki izluchaiushchego gaza, Nauka, M., 1985, 304 pp.

[5] M. N. Nikolaev, A. A. Ignatov, N. V. Isaev, V. F. Kokhlov, “The method of subgroups for considering the resonance structure of the cross sections in neutron calculations”, Soviet Atomic Energy, 30:5 (1971), 528–533 | DOI | Zbl

[6] A. A. Arking, K. Grossman, “The influence of line shape and band structure on temperatures in planetary atmospheres”, J. Atmos. Sci., 29 (1972), 937–949 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[7] D. E. Cullen, “Application of the probability tabel method to multigroup calculations of neutron transport”, J. Nuclear Science and Engineering, 55 (1974), 387–400 | DOI

[8] R. M. Goody, Y. L. Yung, Atmospheric radiation. Theoretical basis, 2 ed., Oxford University Press, New York, 1989, 536 pp.

[9] A. A. Lacis, V. Oinas, “A description of the correlated k-distribution method for modeling nongray gaseous absorption. Thermal emission, and multiple scattering in vertically inhomogeneous atmospheres”, J. Geophysical Research, 96:D5 (1991), 9027–9063 | DOI

[10] I. L. Tsvetkova, A. V. Shilkov, “Osrednenie uravneniia perenosa v rezonansno pogloshchaiushchei srede”, Matematicheskoe modelirovanie, 1:1 (1989), 91–100

[11] A. V. Shilkov, “Metody osredneniia sechenii i energeticheskogo spektra v zadachakh perenosa neitronov”, Matematicheskoe modelirovanie, 3:2 (1991), 63–81

[12] A. V. Shilkov, “Generalized multigroup approximation and Lebesgue averaging method in particle transport problems”, Transp. Theory and Stat. Physics, 23:6 (1994), 781–814 | DOI | MR | Zbl

[13] A. V. Shilkov, M. N. Gerthev, “Verification of the Lebesgue averaging method”, Mathematical Models and Computer Simulations, 8:2 (2016), 93–107 | DOI | Zbl

[14] S. V. Mozheiko, I. L. Tsvetkova, A. V. Shilkov, “Raschet perenosa izlucheniia v goriachem vozdukhe”, Matemat. modelirovanie, 4:1 (1992), 65–82

[15] A. V. Shilkov, I. L. Tsvetkova, S. V. Shilkova, “Sistema ATRAD dlia raschetov atmosfernoi radiatsii: lebegovskoe osrednenie spektrov i sechenii pogloshcheniia”, Matem. modelirovanie, 9:6 (1997), 3–24

[16] Yu. D. Shmyglevskii, “Calculation of radiative transfer by galerkin's method”, USSR Comput. Math. and Math. Physics, 13:2 (1973), 157–168 | DOI | Zbl

[17] Yu. D. Shmyglevskii, “A version of the moment method of calculating the transfer of selective radiation”, USSR Comput. Math. and Math. Physics, 17:3 (1977), 222–228 | DOI

[18] V. M. Krivtsov, “Ob odnom podhode k raschetu selektivnogo izluchenia”, J. Vychislit. Matem. i Matem. Fiziki, 14:6 (1974), 1595–1599

[19] V. M. Krivtsov, “O raschete selektivnogo izluchenia”, Dinamika izluchaiushego gaza, 2, ed. Iu. D. Shmyglevskii, Izd. Vychisl. Tsentra AN SSSR, M., 1976, 36–41 | Zbl

[20] A. M. Weinberg, E. P. Wigner, The physical theory of neutron chain reactors, University of Chicago Press, Chicago, 1958, 808 pp. | MR

[21] M. N. Nikolaev, B. G. Riazanov, M. M. Savoskin, A. M. Tsibulia, Mnogogruppovoe priblizhenie v teorii perenosa neitronov, Energoatomizdat, M., 1984, 256 pp.

[22] A. V. Shilkov, “Metod spektralnykh momentov v modelirovanii izluchayushei stolknovitelnoi plazmy”, Keldysh Institute preprints, 2016, 036, 48 pp.

[23] A. V. Shilkov, “Uravnenia dla spektralnykh momentov funktsii raspredelenia fotonov”, Keldysh Institute preprints, 2015, 077, 36 pp. | Zbl

[24] G. Szego, Orthogonal polynomials, American Math. Society, Providence, 1939 | MR

[25] W. M. Elsasser, “Mean Absorption and Equivalent Absorption Coefficient of a Band Spectrum”, Physical Review, 54 (1938), 126 | DOI