Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_10_a2, author = {A. V. Smurygin}, title = {Grinding of triangular mesh in the problem of biharmonic optimization of complex surfaces}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {33--39}, publisher = {mathdoc}, volume = {28}, number = {10}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_10_a2/} }
TY - JOUR AU - A. V. Smurygin TI - Grinding of triangular mesh in the problem of biharmonic optimization of complex surfaces JO - Matematičeskoe modelirovanie PY - 2016 SP - 33 EP - 39 VL - 28 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_10_a2/ LA - ru ID - MM_2016_28_10_a2 ER -
A. V. Smurygin. Grinding of triangular mesh in the problem of biharmonic optimization of complex surfaces. Matematičeskoe modelirovanie, Tome 28 (2016) no. 10, pp. 33-39. http://geodesic.mathdoc.fr/item/MM_2016_28_10_a2/
[1] A. V. Smurygin, I. V. Zhurbin, “Biharmonic Optimization of Piecewise Planar Surfaces”, Optoelectronics, Instrumentation and Data Processing, 51:2 (2015), 170–174 | DOI
[2] G. Buscaglia, E. Dari, “Anisotropic Mesh Optimization and its Application in Adaptivity”, Int. J. Numer. Meth. Eng., 40 (1997), 4119–4136 | 3.0.CO;2-R class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[3] A. V. Skvortsov, Trianguliatsiia Delone i ee primenenie, Izd-vo Tom. un-ta, Tomsk, 2002, 128 pp.