Grinding of triangular mesh in the problem of biharmonic optimization of complex surfaces
Matematičeskoe modelirovanie, Tome 28 (2016) no. 10, pp. 33-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes the method of grinding of a triangular mesh for biharmonic optimization of surfaces. The method provides an approximate equality of the lengths of edges of the grid. Splitting of triangles is based on the properties of the inscribed circle. Issues of the quality of triangles, Delaunay condition are considered.
Mots-clés : surface, Delaunay condition.
Keywords: simplicial scheme, grinding of triangular mesh, biharmonic optimization, quality of triangles
@article{MM_2016_28_10_a2,
     author = {A. V. Smurygin},
     title = {Grinding of triangular mesh in the problem of biharmonic optimization of complex surfaces},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--39},
     publisher = {mathdoc},
     volume = {28},
     number = {10},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_10_a2/}
}
TY  - JOUR
AU  - A. V. Smurygin
TI  - Grinding of triangular mesh in the problem of biharmonic optimization of complex surfaces
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 33
EP  - 39
VL  - 28
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_10_a2/
LA  - ru
ID  - MM_2016_28_10_a2
ER  - 
%0 Journal Article
%A A. V. Smurygin
%T Grinding of triangular mesh in the problem of biharmonic optimization of complex surfaces
%J Matematičeskoe modelirovanie
%D 2016
%P 33-39
%V 28
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_10_a2/
%G ru
%F MM_2016_28_10_a2
A. V. Smurygin. Grinding of triangular mesh in the problem of biharmonic optimization of complex surfaces. Matematičeskoe modelirovanie, Tome 28 (2016) no. 10, pp. 33-39. http://geodesic.mathdoc.fr/item/MM_2016_28_10_a2/

[1] A. V. Smurygin, I. V. Zhurbin, “Biharmonic Optimization of Piecewise Planar Surfaces”, Optoelectronics, Instrumentation and Data Processing, 51:2 (2015), 170–174 | DOI

[2] G. Buscaglia, E. Dari, “Anisotropic Mesh Optimization and its Application in Adaptivity”, Int. J. Numer. Meth. Eng., 40 (1997), 4119–4136 | 3.0.CO;2-R class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[3] A. V. Skvortsov, Trianguliatsiia Delone i ee primenenie, Izd-vo Tom. un-ta, Tomsk, 2002, 128 pp.