A method for smooth approximation of drag functions
Matematičeskoe modelirovanie, Tome 28 (2016) no. 10, pp. 23-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for smooth approximation of drag functions was proposed. Approximations of russian 1943 drag function and G1, G2, G5, G6, G7, G8, GI drag functions were constructed. The optimal grid step was determined by the Rihardson method of posterior error estimation to solve exterior ballistic task using smooth approximations of drag functions.
Keywords: ballistics, wind resistance, approximation, posterior error estimation, numerical techniques, Runge–Kutta method.
@article{MM_2016_28_10_a1,
     author = {I. A. Kozlitin and A. S. Omelyanov},
     title = {A method for smooth approximation of drag functions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {23--32},
     publisher = {mathdoc},
     volume = {28},
     number = {10},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_10_a1/}
}
TY  - JOUR
AU  - I. A. Kozlitin
AU  - A. S. Omelyanov
TI  - A method for smooth approximation of drag functions
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 23
EP  - 32
VL  - 28
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_10_a1/
LA  - ru
ID  - MM_2016_28_10_a1
ER  - 
%0 Journal Article
%A I. A. Kozlitin
%A A. S. Omelyanov
%T A method for smooth approximation of drag functions
%J Matematičeskoe modelirovanie
%D 2016
%P 23-32
%V 28
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_10_a1/
%G ru
%F MM_2016_28_10_a1
I. A. Kozlitin; A. S. Omelyanov. A method for smooth approximation of drag functions. Matematičeskoe modelirovanie, Tome 28 (2016) no. 10, pp. 23-32. http://geodesic.mathdoc.fr/item/MM_2016_28_10_a1/

[1] Burlov V. V. i dr., Ballistika stvolnykh sistem, eds. L. N. Lysenko, A. M. Lipanov, Mashinostroenie, M., 2006, 461 pp.

[2] Kalitkin N. N., Koriakin P. V., Chislennye metody, v. 2, Metody matematicheskoi fiziki, Akademiia, M., 2013, 304 pp.

[3] Alshina E. A., Zaks E. M., Kalitkin N. N., “Optimal First- to Sixth-Order Accurate Runge–Kutta Schemes”, Computational Mathematics and Mathematical Physics, 48:3 (2008), 395–406 | DOI | MR | Zbl

[4] Kalitkin N. N., Alshina E. A., Chislennye metody, v. 1, Chislennyi analiz, Akademiia, M., 2013, 304 pp.

[5] Dormand J. R., Prince P. J., “A family of embedded Runge–Kutta formulae”, Journal of Computational and Applied Mathematics, 6:1 (1980), 19–26 | DOI | MR | Zbl

[6] Shapiro Ia. M., Vneshniaia ballistika, Oborongiz, M., 1946, 408 pp.

[7] Lagarias J. C., Reeds J. A., Wright M. H., Wright P. E., “Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions”, SIAM Journal of Optimization, 9:1 (1998), 112–147 | DOI | MR | Zbl

[8] http://www.jbmballistics.com/ballistics/downloads/downloads.shtml

[9] Rukovodstvo po 12,7-mm pulemetu Utes (NSV-12,7), Voennoe izdatelstvo, M., 1986 | Zbl

[10] Efremov A. K., “Approksimatsiia zakona soprotivleniia vozdukha 1943 g.”, Elektronny'nauchno-tekhnicheski' zhurnal MGTU im. N. E. Baumana, 2013, no. 10, 269–284