Stationary solutions of equations describing the nonisothermal flow of an incompressible viscoelastic polymeric fluid
Matematičeskoe modelirovanie, Tome 28 (2016) no. 10, pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is dedicated to analysis and simulation of non-isothermal flow of an incompressible viscoelastic polymer fluid arising while manufacturing products from polymers by 3D printing. To this end a new rheological model was used accounting for the properties of macromolecular coil of solutions and melts of linear polymers, their anisotropy, viscosity and temperature impacts. A boundary value problem for quasilinear equation defining the velocity profile of polymer fluid through the tube with a rectangular cross-section was posed. The problem includes small parameters and nonlinear functional dependencies with large gradients that makes it difficult to perform numerical simulations. On the basis of approximations without saturation a new computational algorithm with enhanced properties of accuracy and stability was developed. It allows us to obtain numerical solutions in the wide range of values of problem parameters, including the cases of small thickness of channel.
Keywords: rheological model, boundary value problem, quasilinear equation, nonlocal numerical method, method without saturation.
@article{MM_2016_28_10_a0,
     author = {A. M. Blokhin and B. V. Semisalov and A. S. Shevchenko},
     title = {Stationary solutions of equations describing the nonisothermal flow of an incompressible viscoelastic polymeric fluid},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {28},
     number = {10},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_10_a0/}
}
TY  - JOUR
AU  - A. M. Blokhin
AU  - B. V. Semisalov
AU  - A. S. Shevchenko
TI  - Stationary solutions of equations describing the nonisothermal flow of an incompressible viscoelastic polymeric fluid
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 3
EP  - 22
VL  - 28
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_10_a0/
LA  - ru
ID  - MM_2016_28_10_a0
ER  - 
%0 Journal Article
%A A. M. Blokhin
%A B. V. Semisalov
%A A. S. Shevchenko
%T Stationary solutions of equations describing the nonisothermal flow of an incompressible viscoelastic polymeric fluid
%J Matematičeskoe modelirovanie
%D 2016
%P 3-22
%V 28
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_10_a0/
%G ru
%F MM_2016_28_10_a0
A. M. Blokhin; B. V. Semisalov; A. S. Shevchenko. Stationary solutions of equations describing the nonisothermal flow of an incompressible viscoelastic polymeric fluid. Matematičeskoe modelirovanie, Tome 28 (2016) no. 10, pp. 3-22. http://geodesic.mathdoc.fr/item/MM_2016_28_10_a0/

[1] W. W. Graessley, Polymeric Liquids Networks: Dynamics and Rheology, Garland Science, London, 2008

[2] M. Kontopoulou, Applied polymer rheology: polymeric fluids with industrial applications, Wiley, Hoboken, 2012

[3] J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed., Wiley and Sons, London, 1980

[4] A. Yu. Grosberg, A. R. Khokhlov, Statistical Physics of Macromolecules, Springer, Berlin, 1994

[5] M. Doi, S. F. Edwards, The Theory of Polymer Dynamics, Oxford Univ. Press, Oxford, 1986

[6] G. Astarita, G. Marucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill Inc., N.Y., 1974

[7] G. Pyshnograi, H. Joda, I. Pyshnograi, “The Mesoscopic Constitutive Equations for Polymeric Fluids and Some Examples of Viscometric Flows”, World Journal of Mechanics, 2:1 (2012), 19–27 | DOI

[8] A. I. Leonov, A Brief Introduction to the Rheology of Polymeric Fluids, Coxmoor Publ. Company, Oxford, 2008

[9] H. Sun, S.-Q. Wang, “Shear and extensional rheology of entangled polymer melts: Similarities and differences”, Science China Chemistry, 55:5 (2012), 779–786 | DOI | MR

[10] B. Marcone, E. Orlandini, A. L. Stella, F. Zonta, What is the length of a knot in a polymer?, J. Phys. A: Math. Gen., 38 (2005), L15–L21 | DOI | MR | Zbl

[11] K. Kremer, S. K. Sukumaran, R. Everaers, G. S. Grest, “Entangled polymer systems”, Comput. Phys. Commun., 169:1–3 (2005), 75–81 | DOI

[12] V. N. Pokrovskii, The Mesoscopic Theory of Polymer Dynamics, 2nd ed., Springer, Berlin, 2010 | DOI

[13] Iu. A. Altukhov, A. S. Gusev, G. V. Pyshnograi, Vvedenie v mezoskopicheskuiu teoriiu tekuchesti polimernykh sistem, Izd-vo AltGPA, Barnaul, 2012

[14] M. A. Makarova, A. S. Gusev, G. V. Pyshnograi, A. A. Rybakov, “Nelineinaia teoriia viazkouprugosti lineinykh polimerov”, EFTZh, 2 (2007), 1–54

[15] A. M. Blokhin, A. S. Ibragimova, B. V. Semisalov, “Konstruirovanie vychislitelnogo algoritma dlia sistemy momentnykh uravnenii, opisyvaiushchikh perenos zariada v poluprovodnikakh”, Mat. modelirovanie, 21:4 (2009), 15–34 | Zbl

[16] B. V. Semisalov, “Nelokalnyi algoritm poiska reshenii uravneniia Puassona i ego prilozheniia”, Zhurn. vych. mat. i mat. fiz., 54:7 (2014), 1110–1135 | DOI | Zbl

[17] K. I. Babenko, Osnovy chislennogo analiza, Nauka. Gl. red. fiz.-mat. lit., M., 1986, 714 pp.

[18] A. M. Blokhin, A. S. Rudometova, “Statsionarnoe reshenie uravnenii, opisyvaiushchikh neizotermi-cheskuiu elektrokonvektsiiu slaboprovodiashchei neszhimaemoi polimernoi zhidkosti”, Sib. zhurn. industr. mat., 18:1(61) (2015), 3–13

[19] A. M. Blokhin, N. V. Bambaeva, “Stationary solutions of equations of incompressible viscoelastic polymer liquid”, Computational Mathematics and Mathematical Physics, 54:5 (2014), 874–899 | DOI | DOI | MR | Zbl

[20] A. M. Blokhin, B. V. Semisalov, “Statsionarnoe techenie neszhimaemoi viazkouprugoi polimernoi zhidkosti v kanale s ellipticheskim secheniem”, Sib. zhurn. industr. mat., 17:4(60) (2014), 38–47 | Zbl

[21] A. D. Polianin, Spravochnik po lineinym uravneniiam matematicheskoi fiziki, Fizmatlit, M., 2001, 576 pp.

[22] E. Kamke, Differentialgleichungen. Losungsmethoden und Losungen I. Gewohnliche Differentialgleichungen, Leipzig, 1942

[23] A. M. Blokhin, B. V. Semisalov, “Statsionarnoe techenie neszhimaemoi viazkouprugoi polimernoi zhidkosti v kanale s priamougolnym poperechnym secheniem”, PMTF

[24] I. N. Bronshtein, K. A. Semendiaev, Spravochnik po matematike, Nauka, M., 1964, 608 pp.

[25] B. V. Semisalov, Programma poiska reshenii kraevykh zadach dlia uravnenii v chastnykh proizvodnykh s vysokoi tochnostiu i malymi vychislitelnymi zatratami “Nelokalnyi metod bez nasyshcheniia”, Svidetelstvo o gosudarstvennoi registratsii programmy dlia EVM No 2015615527 ot 20 maia 2015 g.