Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_10_a0, author = {A. M. Blokhin and B. V. Semisalov and A. S. Shevchenko}, title = {Stationary solutions of equations describing the nonisothermal flow of an incompressible viscoelastic polymeric fluid}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--22}, publisher = {mathdoc}, volume = {28}, number = {10}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_10_a0/} }
TY - JOUR AU - A. M. Blokhin AU - B. V. Semisalov AU - A. S. Shevchenko TI - Stationary solutions of equations describing the nonisothermal flow of an incompressible viscoelastic polymeric fluid JO - Matematičeskoe modelirovanie PY - 2016 SP - 3 EP - 22 VL - 28 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_10_a0/ LA - ru ID - MM_2016_28_10_a0 ER -
%0 Journal Article %A A. M. Blokhin %A B. V. Semisalov %A A. S. Shevchenko %T Stationary solutions of equations describing the nonisothermal flow of an incompressible viscoelastic polymeric fluid %J Matematičeskoe modelirovanie %D 2016 %P 3-22 %V 28 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2016_28_10_a0/ %G ru %F MM_2016_28_10_a0
A. M. Blokhin; B. V. Semisalov; A. S. Shevchenko. Stationary solutions of equations describing the nonisothermal flow of an incompressible viscoelastic polymeric fluid. Matematičeskoe modelirovanie, Tome 28 (2016) no. 10, pp. 3-22. http://geodesic.mathdoc.fr/item/MM_2016_28_10_a0/
[1] W. W. Graessley, Polymeric Liquids Networks: Dynamics and Rheology, Garland Science, London, 2008
[2] M. Kontopoulou, Applied polymer rheology: polymeric fluids with industrial applications, Wiley, Hoboken, 2012
[3] J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed., Wiley and Sons, London, 1980
[4] A. Yu. Grosberg, A. R. Khokhlov, Statistical Physics of Macromolecules, Springer, Berlin, 1994
[5] M. Doi, S. F. Edwards, The Theory of Polymer Dynamics, Oxford Univ. Press, Oxford, 1986
[6] G. Astarita, G. Marucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill Inc., N.Y., 1974
[7] G. Pyshnograi, H. Joda, I. Pyshnograi, “The Mesoscopic Constitutive Equations for Polymeric Fluids and Some Examples of Viscometric Flows”, World Journal of Mechanics, 2:1 (2012), 19–27 | DOI
[8] A. I. Leonov, A Brief Introduction to the Rheology of Polymeric Fluids, Coxmoor Publ. Company, Oxford, 2008
[9] H. Sun, S.-Q. Wang, “Shear and extensional rheology of entangled polymer melts: Similarities and differences”, Science China Chemistry, 55:5 (2012), 779–786 | DOI | MR
[10] B. Marcone, E. Orlandini, A. L. Stella, F. Zonta, What is the length of a knot in a polymer?, J. Phys. A: Math. Gen., 38 (2005), L15–L21 | DOI | MR | Zbl
[11] K. Kremer, S. K. Sukumaran, R. Everaers, G. S. Grest, “Entangled polymer systems”, Comput. Phys. Commun., 169:1–3 (2005), 75–81 | DOI
[12] V. N. Pokrovskii, The Mesoscopic Theory of Polymer Dynamics, 2nd ed., Springer, Berlin, 2010 | DOI
[13] Iu. A. Altukhov, A. S. Gusev, G. V. Pyshnograi, Vvedenie v mezoskopicheskuiu teoriiu tekuchesti polimernykh sistem, Izd-vo AltGPA, Barnaul, 2012
[14] M. A. Makarova, A. S. Gusev, G. V. Pyshnograi, A. A. Rybakov, “Nelineinaia teoriia viazkouprugosti lineinykh polimerov”, EFTZh, 2 (2007), 1–54
[15] A. M. Blokhin, A. S. Ibragimova, B. V. Semisalov, “Konstruirovanie vychislitelnogo algoritma dlia sistemy momentnykh uravnenii, opisyvaiushchikh perenos zariada v poluprovodnikakh”, Mat. modelirovanie, 21:4 (2009), 15–34 | Zbl
[16] B. V. Semisalov, “Nelokalnyi algoritm poiska reshenii uravneniia Puassona i ego prilozheniia”, Zhurn. vych. mat. i mat. fiz., 54:7 (2014), 1110–1135 | DOI | Zbl
[17] K. I. Babenko, Osnovy chislennogo analiza, Nauka. Gl. red. fiz.-mat. lit., M., 1986, 714 pp.
[18] A. M. Blokhin, A. S. Rudometova, “Statsionarnoe reshenie uravnenii, opisyvaiushchikh neizotermi-cheskuiu elektrokonvektsiiu slaboprovodiashchei neszhimaemoi polimernoi zhidkosti”, Sib. zhurn. industr. mat., 18:1(61) (2015), 3–13
[19] A. M. Blokhin, N. V. Bambaeva, “Stationary solutions of equations of incompressible viscoelastic polymer liquid”, Computational Mathematics and Mathematical Physics, 54:5 (2014), 874–899 | DOI | DOI | MR | Zbl
[20] A. M. Blokhin, B. V. Semisalov, “Statsionarnoe techenie neszhimaemoi viazkouprugoi polimernoi zhidkosti v kanale s ellipticheskim secheniem”, Sib. zhurn. industr. mat., 17:4(60) (2014), 38–47 | Zbl
[21] A. D. Polianin, Spravochnik po lineinym uravneniiam matematicheskoi fiziki, Fizmatlit, M., 2001, 576 pp.
[22] E. Kamke, Differentialgleichungen. Losungsmethoden und Losungen I. Gewohnliche Differentialgleichungen, Leipzig, 1942
[23] A. M. Blokhin, B. V. Semisalov, “Statsionarnoe techenie neszhimaemoi viazkouprugoi polimernoi zhidkosti v kanale s priamougolnym poperechnym secheniem”, PMTF
[24] I. N. Bronshtein, K. A. Semendiaev, Spravochnik po matematike, Nauka, M., 1964, 608 pp.
[25] B. V. Semisalov, Programma poiska reshenii kraevykh zadach dlia uravnenii v chastnykh proizvodnykh s vysokoi tochnostiu i malymi vychislitelnymi zatratami “Nelokalnyi metod bez nasyshcheniia”, Svidetelstvo o gosudarstvennoi registratsii programmy dlia EVM No 2015615527 ot 20 maia 2015 g.