Simulation of oil recovery processes with the employment of high-performance computer systems
Matematičeskoe modelirovanie, Tome 27 (2015) no. 9, pp. 73-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

Problems of mathematical modeling of two-phase flows in porous media, in particular, simulation of oil recovery processes, are considered. An economical numerical algorithm based on the kinetic approach with the use of explicit schemes is proposed to provide high efficiency of the employment of modern supercomputers with a hybrid architecture.
Keywords: two-phase flows in porous media, explicit difference schemes, parallel algorithms, supercomputers with graphics accelerators.
@article{MM_2015_27_9_a5,
     author = {A. A. Lyupa and D. N. Morozov and M. A. Trapeznikova and B. N. Chetverushkin and N. G. Churbanova and S. V. Lemeshevsky},
     title = {Simulation of oil recovery processes with the employment of high-performance computer systems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {73--80},
     publisher = {mathdoc},
     volume = {27},
     number = {9},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_9_a5/}
}
TY  - JOUR
AU  - A. A. Lyupa
AU  - D. N. Morozov
AU  - M. A. Trapeznikova
AU  - B. N. Chetverushkin
AU  - N. G. Churbanova
AU  - S. V. Lemeshevsky
TI  - Simulation of oil recovery processes with the employment of high-performance computer systems
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 73
EP  - 80
VL  - 27
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_9_a5/
LA  - ru
ID  - MM_2015_27_9_a5
ER  - 
%0 Journal Article
%A A. A. Lyupa
%A D. N. Morozov
%A M. A. Trapeznikova
%A B. N. Chetverushkin
%A N. G. Churbanova
%A S. V. Lemeshevsky
%T Simulation of oil recovery processes with the employment of high-performance computer systems
%J Matematičeskoe modelirovanie
%D 2015
%P 73-80
%V 27
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_9_a5/
%G ru
%F MM_2015_27_9_a5
A. A. Lyupa; D. N. Morozov; M. A. Trapeznikova; B. N. Chetverushkin; N. G. Churbanova; S. V. Lemeshevsky. Simulation of oil recovery processes with the employment of high-performance computer systems. Matematičeskoe modelirovanie, Tome 27 (2015) no. 9, pp. 73-80. http://geodesic.mathdoc.fr/item/MM_2015_27_9_a5/

[1] A. N. Konovalov, Problems of Multiphase Fluid Filtration, World Scientific Pub. Co. Inc., Singapore, 1994, 173 pp. | Zbl

[2] Yu. M. Layevskii, P. E. Popov, A. A. Kalinkin, “Modelirovanie filtratsii dvukhfaznoi zhidkosti smeshannym metodom konechnyh elementov”, Matematicheskoe modelirovanie, 22:3 (2010), 74–90 | MR

[3] M. A. Trapeznikova, M. S. Belotserkovskaia, B. N. Chetverushkin, “Analog kineticheski-soglasovannykh skhem dlia modelirovaniia zadachi filtratsii”, Matematicheskoe modelirovanie, 14:10 (2002), 69–76 | MR

[4] B. N. Chetverushkin, D. N. Morozov, M. A. Trapeznikova, N. G. Churbanova, E. V. Shil'nikov, “An Explicit Scheme for the Solution of the Filtration Problems”, Mathematical Models and Computer Simulations, 2:6 (2010), 669–677 | MR

[5] Chetverushkin B. N., Kinetic shemes and Quasi-Gas Dynamics system of equations, CIMNE, Barcelona, 2008

[6] D. N. Morozov, M. A. Trapeznikova, B. N. Chetverushkin, N. G. Churbanova, “Application of Explicit Schemes for the Simulation of the Two Phase Filtration Process”, Mathematical Models and Computer Simulations, 4:1 (2012), 62–67 | MR | Zbl

[7] D. N. Morozov, B. N. Chetverushkin, N. G. Churbanova, M. A. Trapeznikova, “An Explicit Algorithm for Porous Media Flow Simulation Using GPUs”, CD-Rom Proc. of the Second Int. Conf. on Parallel, Disributed, Grid and Cloud Computing for Engineering (Ajaccio, Corsica, France, 12–15 Apr. 2011), eds. B. N. V. Topping et al., CIVIL-COMP PRESS, Stirlingshire, Scotland, UK, 19

[8] M. A. Trapeznikova, B. N. Chetverushkin, N. G. Churbanova, D. N. Morozov, “Two-Phase Porous Media Flow Simulation on a Hybrid Cluster”, Lecture Notes in Computer Science, 7116, Springer, 2012, 644–651 | MR

[9] B. N. Chetverushkin, A. A. Kuleshov, “Problemy primeneniia superkomputerov dlia resheniia zadach neftegazovogo kompleksa”, Vestnik TSKR Rosnedra, 2013, no. 3, 9–14

[10] R. Helmig, Multiphase flow and transport processes in the subsurface — A contribution to the modeling of hydrosystems, Springer, Berlin, 1997, 367 pp.

[11] P. Bastian, Numerical computation of multiphase flows in porous media, Habilitation thesis, Christian-Albrechts-Universitaet, Kiel, 1999, 222 pp.

[12] R. H. Brooks, A. T. Corey, Hydraulic properties of porous media, Colorado State University Hydrology Paper, No 3, Colorado State University, Fort Collins, 1964, 27 pp.

[13] D. N. Morozov, M. A. Trapeznikova, B. N. Chetverushkin, N. G. Churbanova, “Simulation of Filtration Problems on Hybrid Computer Systems”, Mathematical Models and Computer Simulations, 5:3 (2013), 208–212 | MR

[14] A. A. Lyupa, D. N. Morozov, M. A. Trapeznikova, B. N. Chetverushkin, N. G. Churbanova, “Three Phase Filtration Modeling by Explicit Methods on Hybrid Computer Systems”, Mathematical Models and Computer Simulations, 6:6 (2014), 551–559 | Zbl

[15] http://www.kiam.ru/

[16] B. N. Chetverushkin, N. G. Churbanova, M. A. Trapeznikova, A. A. Sukhinov, A. A. Malinovskij, “Adaptive Cartesian mesh refinement for simulating multiphase flows in porous media”, Computational Methods in Applied Mathematics, 8:2 (2008), 101–115 | MR | Zbl

[17] Web site for the 10th SPE Comparative Solution Project, http://www.spe.org/csp/

[18] M. A. Christie, M. J. Blunt, “Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques”, SPE (Feb. 2001), 66599