Identification of the hydraulic resistance coefficient for a pipeline section under unsteady flow regime
Matematičeskoe modelirovanie, Tome 27 (2015) no. 8, pp. 47-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work, we consider an approach to the identification of the hydraulic resistance coefficient of a linear section of a main pipeline when transporting hydrocarbon stock. The considered identification problem is reduced to the class of finite-dimensional optimization problems, for the solution of which we propose to use efficient numerical methods of first-order finite-dimensional optimization. With this purpose, in the work, we derive formulas for the components of the gradient of the objective functional in the space of identifiable parameters. The obtained values of the optimizable vector are then can be used to build the identifiable function from some class of functions using interpolation and approximation methods. The results of the carried out numerical experiments are given.
Keywords: distributed system, inverse problem, problem of identification, gradient of the functional.
Mots-clés : hydraulic resistance coefficient, adjoint problem
@article{MM_2015_27_8_a3,
     author = {S. Z. Guliyev},
     title = {Identification of the hydraulic resistance coefficient for a pipeline section under unsteady flow regime},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {47--62},
     publisher = {mathdoc},
     volume = {27},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_8_a3/}
}
TY  - JOUR
AU  - S. Z. Guliyev
TI  - Identification of the hydraulic resistance coefficient for a pipeline section under unsteady flow regime
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 47
EP  - 62
VL  - 27
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_8_a3/
LA  - ru
ID  - MM_2015_27_8_a3
ER  - 
%0 Journal Article
%A S. Z. Guliyev
%T Identification of the hydraulic resistance coefficient for a pipeline section under unsteady flow regime
%J Matematičeskoe modelirovanie
%D 2015
%P 47-62
%V 27
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_8_a3/
%G ru
%F MM_2015_27_8_a3
S. Z. Guliyev. Identification of the hydraulic resistance coefficient for a pipeline section under unsteady flow regime. Matematičeskoe modelirovanie, Tome 27 (2015) no. 8, pp. 47-62. http://geodesic.mathdoc.fr/item/MM_2015_27_8_a3/

[1] M. A. Guseynzade, V. A. Iufin, Neustanovivsheesia dvizhenie nefti i gaza v magistralnykh trubo-provodakh, Nedra, M., 1981, 232 pp.

[2] I. A. Charnyi, Neustanovivsheesia dvizhenie realnoy zhidkosti v trubakh, Nedra, M., 1975, 296 pp.

[3] R. A. Aliev, V. D. Belousov, A. G. Nemudrov, V. A. Iufin, E. I. Iakovlev, Truboprovodniy transport nefti i gaza, Nedra, M., 1988, 368 pp.

[4] V. V. Mikhaylov, “Utochnennaia formula dlia rascheta koeffitsienta gidravlicheskogo soprotivleniia truboprovodov”, Izvestiia RAN, mekhanika zhidkosti i gaza, 2001, no. 4, 159–161

[5] A. P. Silash, Dobycha i transport nefti i gaza, Nedra, M., 1980, 375 pp.

[6] V. G. Geyer, V. S. Dulin, A. N. Zaria, Gidravlika i gidroprivod, Nedra, M., 1991, 331 pp.

[7] A. N. Tikhonov, A. A. Samarskiy, Uravneniia matematicheskoy fiziki, Nauka, M., 1966, 724 pp.

[8] E. R. Ashrafova, V. M. Mamedov, “Chislennoe issledovanie sostoianiia evoliutsionnykh protsessov pri nezadannykh nachalnykh usloviiakh”, Izvestiia NAN Azerbaydzhana, ser. fiz.-mat. nauk, 33:6 (2013), 30–38

[9] K. R. Aida-zade, S. Z. Guliyev, “Numerical solution of nonlinear inverse coefficient problems for ordinary differential equations”, Comput. Math. Math. Phys., 51:5 (2011), 803–815 | Zbl

[10] P. E. Gill, W. Murray, M. H. Wright, Practical optimization, Emerald Group Publishing Limited, 1982, 418 pp.

[11] F. P. Vasilev, Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[12] O. A. Ladyzhenskaia, Kraevye zadachi matematicheskoy fiziki, Nauka, M., 1973, 408 pp.