Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_7_a6, author = {A. A. Belov and N. N. Kalitkin}, title = {Superfast method with guaranteed accuracy for elliptic equations in rectangular domain}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {37--43}, publisher = {mathdoc}, volume = {27}, number = {7}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_7_a6/} }
TY - JOUR AU - A. A. Belov AU - N. N. Kalitkin TI - Superfast method with guaranteed accuracy for elliptic equations in rectangular domain JO - Matematičeskoe modelirovanie PY - 2015 SP - 37 EP - 43 VL - 27 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2015_27_7_a6/ LA - ru ID - MM_2015_27_7_a6 ER -
A. A. Belov; N. N. Kalitkin. Superfast method with guaranteed accuracy for elliptic equations in rectangular domain. Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 37-43. http://geodesic.mathdoc.fr/item/MM_2015_27_7_a6/
[1] N. N. Kalitkin, “An improved factorization of parabolic schemes”, Doklady Mathematics, 71:3 (2005), 480–483 | Zbl
[2] A. A. Boltnev, O. A. Kacher, N. N. Kalitkin, “Logarithmically convergent relaxation count”, Doklady Mathematics, 72:2 (2005), 806–809 | Zbl
[3] N. N. Kalitkin, A. A. Belov, “Analogue of the Richardson method for logarithmically converging time marching”, Doklady Mathematics, 88:2 (2013), 596–600 | Zbl
[4] A. A. Belov, N. N. Kalitkin, “Evolutionary factorization and superfast relaxation count”, Mathematical modeling and simulations
[5] A. A. Belov, N. N. Kalitkin, “Evoliutsionnaia faktorizatsiia i sverkhbystryi schet na ustanovlenie”, Keldysh Institute preprints, 2013, 069, 36 pp.
[6] N. N. Kalitkin, P. V. Koriakin, Chislennye metody, V dvukh knigakh, v. 2, Metody matematicheskoi fiziki, Akademiia, M., 2013