Analytic-numerial method for computation of interaction of physical fields in semiconductor diode
Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 15-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper suggests an analytic-numerical method for solving a singularly perturbed nonlinear system of differential equations, which models interaction of physical fields in semiconductor diode. Interaction of electric field and densities of holes and electrons is considered in drift-diffusion approximation and recombination function is taken in the form, proposed by Shockley, Read and Hall. The method was realized and wide numerical experiments approved superexponential convergence rate of the method.
Keywords: modeling of physical fields in semiconductor devices, singularly perturbed systems, analytic-numerical methods, functional Newton’s method, WKB approximation.
@article{MM_2015_27_7_a3,
     author = {S. I. Bezrodnykh and V. I. Vlasov},
     title = {Analytic-numerial method for computation of interaction of physical fields in semiconductor diode},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {15--24},
     publisher = {mathdoc},
     volume = {27},
     number = {7},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_7_a3/}
}
TY  - JOUR
AU  - S. I. Bezrodnykh
AU  - V. I. Vlasov
TI  - Analytic-numerial method for computation of interaction of physical fields in semiconductor diode
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 15
EP  - 24
VL  - 27
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_7_a3/
LA  - ru
ID  - MM_2015_27_7_a3
ER  - 
%0 Journal Article
%A S. I. Bezrodnykh
%A V. I. Vlasov
%T Analytic-numerial method for computation of interaction of physical fields in semiconductor diode
%J Matematičeskoe modelirovanie
%D 2015
%P 15-24
%V 27
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_7_a3/
%G ru
%F MM_2015_27_7_a3
S. I. Bezrodnykh; V. I. Vlasov. Analytic-numerial method for computation of interaction of physical fields in semiconductor diode. Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 15-24. http://geodesic.mathdoc.fr/item/MM_2015_27_7_a3/

[1] S. M. Sze, Physics of Semiconductor Devices, J. Wiley Sons, New York, 1981, 861 pp.

[2] S. Selberherr, Analysis and simulation of semiconductor devices, Springer-Verlag, 1984, 292 pp.

[3] K. Kano, Semiconductor devices, Prentice Hall, 1988, 480 pp.

[4] P. Markowich, S. J. Polak, C. Den Heijer, W. H. A. Schilders, “Semiconductor device modeling from the numerical point of view”, Internat. J. Numer. Mathods Engng., 24:4 (1987), 63–83

[5] T. E. Zirkle, D. K. Schroder, C. E. Backus, “The superlinearity of short cirquit current of low resistance concentrator Solar Cells”, IEEE Trans. ED, 36:7 (1989), 1286–1294

[6] S. I. Bezrodnykh, V. I. Vlasov, “The Boundary value problem for the simulation of physical fields in a semiconductor diode”, Computational Mathematics and Mathematical Physics, 44:12 (2004), 2112–2142 | Zbl

[7] M. Hinze, R. Pinnau, “Mathematical tools in optimal semiconductor design”, Bull. Inst. Math. Acad. Sin., (New Series), 2:2 (2007), 569–586 | Zbl

[8] V. I. Vlasov, S. I. Bezrodnykh, “A method for solving a singularly perturbed system of nonlinear differential equations”, Doklady Mathematics, 69:1 (2004), 116–119 | Zbl

[9] S. I. Bezrodnykh, V. I. Vlasov, “A method for solving nonlinear differential equations modeling a semiconductor diode”, Spectral and Evolution Problems, 14 (2004), 60–72

[10] S. I. Bezrodnykh, V. I. Vlasov, “Effective solution of a singularly perturbed system of nonlinear differential equations”, Journal of Mathematical Sciences, 145:5 (2007), 5155–5164 | Zbl | Zbl

[11] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford, 1982, 589 pp. | Zbl

[12] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Chislennye metody, Nauka, M., 1987, 636 pp.

[13] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, Dover publications, New York, 1999, 288 pp.

[14] J. Heading, An introduction to phase-integral methods, J. Wiley Sons, London–New York, 1962, 169 pp. | Zbl