Study of mathematical model of nonlinear optical system with two dimensional feedback
Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 117-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of modeling of nonlinear optical system with two-dimensional feedback leads was considered. The mathematical problem was reduced to the functional differentially parabolic equation with transformation of argument in younger members. The strong resolvability in the case of presence of variable transformation in minor and major terms was investigated.
Keywords: functional-differential equations, two-dimentional feedback, strong solutions.
@article{MM_2015_27_7_a17,
     author = {A. M. Selitsky},
     title = {Study of mathematical model of nonlinear optical system with two dimensional feedback},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {117--121},
     publisher = {mathdoc},
     volume = {27},
     number = {7},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_7_a17/}
}
TY  - JOUR
AU  - A. M. Selitsky
TI  - Study of mathematical model of nonlinear optical system with two dimensional feedback
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 117
EP  - 121
VL  - 27
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_7_a17/
LA  - ru
ID  - MM_2015_27_7_a17
ER  - 
%0 Journal Article
%A A. M. Selitsky
%T Study of mathematical model of nonlinear optical system with two dimensional feedback
%J Matematičeskoe modelirovanie
%D 2015
%P 117-121
%V 27
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_7_a17/
%G ru
%F MM_2015_27_7_a17
A. M. Selitsky. Study of mathematical model of nonlinear optical system with two dimensional feedback. Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 117-121. http://geodesic.mathdoc.fr/item/MM_2015_27_7_a17/

[1] S. A. Akhmanov, M. A. Vorontsov, V. Yu. Ivanov, “Generatsiya sruktur v opticheskikh systemakh s dvumernoi obratnoi svyazyu: na puti k sozdaniyu nelineino-opticheskikh analogov neironnykh setei”, Novye fizicheskie printsypy opticheskoi obrabotki informatsii, Nauka, M., 1990, 263–325

[2] A. V. Razgulin, “Self-excited oscillations in the nonlinear parabolic problem with transformed argument”, Computational Mathematics and Mathematical Physics, 33:1 (1993), 61–70 | Zbl

[3] A. V. Razgulin, “Rotational multi-petal waves in optical system with 2-D feedback”, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), 2039, 1993, 342–352 | Zbl

[4] A. L. Skubachevskii, “On some properties of elliptic and parabolic functional-differential equations”, Russian Mathematical Surveys, 51:1 (1996), 169–170

[5] A. M. Selitsky, “Modelirovanie nekotorykh opticheskikh sistem na osnove parabolicheskogo differentsialno-raznostnogo uravneniya”, Matematicheskoe modelirovanie, 24:12 (2012), 38–42

[6] M. S. Agranovich, Sobolevskie prostranstva, ikh obobshcheniya i ellipticheskie zadachi v oblastyakh s gladkoi i lipshitsevoi granitsei, MTSNMO, M., 2013, 379 pp.

[7] H. Triebel, Interpolation Theory, Function spaces, Differential operators, VEB Deutcher Verlag der Wissenschaften, Berlin, 1977, 519 pp.

[8] A. M. Selitskii, “Space of initial data for the second boundary-value problem for a parabolic differential-difference equation in Lipschitz domains”, Mathematical Notes, 94:3–4 (2013), 444–447 | Zbl