Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_7_a17, author = {A. M. Selitsky}, title = {Study of mathematical model of nonlinear optical system with two dimensional feedback}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {117--121}, publisher = {mathdoc}, volume = {27}, number = {7}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_7_a17/} }
TY - JOUR AU - A. M. Selitsky TI - Study of mathematical model of nonlinear optical system with two dimensional feedback JO - Matematičeskoe modelirovanie PY - 2015 SP - 117 EP - 121 VL - 27 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2015_27_7_a17/ LA - ru ID - MM_2015_27_7_a17 ER -
A. M. Selitsky. Study of mathematical model of nonlinear optical system with two dimensional feedback. Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 117-121. http://geodesic.mathdoc.fr/item/MM_2015_27_7_a17/
[1] S. A. Akhmanov, M. A. Vorontsov, V. Yu. Ivanov, “Generatsiya sruktur v opticheskikh systemakh s dvumernoi obratnoi svyazyu: na puti k sozdaniyu nelineino-opticheskikh analogov neironnykh setei”, Novye fizicheskie printsypy opticheskoi obrabotki informatsii, Nauka, M., 1990, 263–325
[2] A. V. Razgulin, “Self-excited oscillations in the nonlinear parabolic problem with transformed argument”, Computational Mathematics and Mathematical Physics, 33:1 (1993), 61–70 | Zbl
[3] A. V. Razgulin, “Rotational multi-petal waves in optical system with 2-D feedback”, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), 2039, 1993, 342–352 | Zbl
[4] A. L. Skubachevskii, “On some properties of elliptic and parabolic functional-differential equations”, Russian Mathematical Surveys, 51:1 (1996), 169–170
[5] A. M. Selitsky, “Modelirovanie nekotorykh opticheskikh sistem na osnove parabolicheskogo differentsialno-raznostnogo uravneniya”, Matematicheskoe modelirovanie, 24:12 (2012), 38–42
[6] M. S. Agranovich, Sobolevskie prostranstva, ikh obobshcheniya i ellipticheskie zadachi v oblastyakh s gladkoi i lipshitsevoi granitsei, MTSNMO, M., 2013, 379 pp.
[7] H. Triebel, Interpolation Theory, Function spaces, Differential operators, VEB Deutcher Verlag der Wissenschaften, Berlin, 1977, 519 pp.
[8] A. M. Selitskii, “Space of initial data for the second boundary-value problem for a parabolic differential-difference equation in Lipschitz domains”, Mathematical Notes, 94:3–4 (2013), 444–447 | Zbl