Evaluation of eigenvalues and eigenfunctions of Coulomb spheroidal wave equation
Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 111-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for evaluation the eigenvalues $\lambda_{m,q}(b,c)$ and the eigenfunctions of Coulomb spheroidal wave equation in a case of complex parameters $b$ and $c$ is proposed. The method is based on construction of two expansions of solution at the singular points $\eta=\pm1$ and on matching of the expansions at the point $\eta=0$. Numerical experiments show that there exist branching points of the eigenvalues $\lambda_{m,q}(b,c)$ for some complex values $b$ or $c$, the order of the branching points is equal $2$.
Keywords: Coulomb spheroidal wave functions, complex parameters, evaluation of eigenvalues, branching points.
@article{MM_2015_27_7_a16,
     author = {S. L. Skorokhodov},
     title = {Evaluation of eigenvalues and eigenfunctions of {Coulomb} spheroidal wave equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {111--116},
     publisher = {mathdoc},
     volume = {27},
     number = {7},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_7_a16/}
}
TY  - JOUR
AU  - S. L. Skorokhodov
TI  - Evaluation of eigenvalues and eigenfunctions of Coulomb spheroidal wave equation
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 111
EP  - 116
VL  - 27
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_7_a16/
LA  - ru
ID  - MM_2015_27_7_a16
ER  - 
%0 Journal Article
%A S. L. Skorokhodov
%T Evaluation of eigenvalues and eigenfunctions of Coulomb spheroidal wave equation
%J Matematičeskoe modelirovanie
%D 2015
%P 111-116
%V 27
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_7_a16/
%G ru
%F MM_2015_27_7_a16
S. L. Skorokhodov. Evaluation of eigenvalues and eigenfunctions of Coulomb spheroidal wave equation. Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 111-116. http://geodesic.mathdoc.fr/item/MM_2015_27_7_a16/

[1] I. V. Komarov, L. I. Ponomarev, S. Iu. Slavianov, Sferoidalnye i kulonovskie sferoidalnye funktsii, Nauka, M., 1976

[2] D. B. Khrebtukov, “The exact numerical solution of a Schrodinger equation with two-Coulomb centers plus oscillator potential”, J. Physics A: Mathem. and General, 25 (1992), 3319–3328 | Zbl

[3] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Washington D. C., 1964

[4] L.-W. Li, X.-K. Kang, M.-S. Leong, Spheroidal Wave Functions in Electromagnetic Theory, Wiley, N.-Y., 2001

[5] P. E. Falloon, P. C. Abbott, J. B. Wang, “Theory and Computation of the Spheroidal Wave Functions”, J. Physics A: Mathem. and General, 36 (2003), 5477–5495 | Zbl

[6] B. E. Barrowes, K. O'Neill, T. M. Grzegorczyk, J. A. Kong, “On the Asymptotic Expansion of the Spheroidal Wave Function and Its Eigenvalues for Complex Size Parameter”, Studies in Applied Mathematics, 113:3 (2004), 271–301 | Zbl

[7] E. L. Ince, Ordinary Differential Equations, Dover Publications, N.-Y., 1926

[8] S. L. Skorokhodov, D. V. Khristoforov, “Calculation of the branch points of the eigenfunctions corresponding to wave spheroidal functions”, Computational Mathematics and Mathematical Physics, 46:7 (2006), 1132–1146

[9] S. L. Skorokhodov, D. V. Khristoforov, “Calculation of the branch points of the eigenvalues of the Coulomb spheroidal wave equation”, Computational Mathematics and Mathematical Physics, 47:11 (2007), 1802–1818

[10] A. A. Abramov, S. V. Kurochkin, “Highly accurate calculation of angular spheroidal functions”, Computational Mathematics and Mathematical Physics, 46:1 (2006), 10–15 | Zbl

[11] G. Blanch, D. S. Clemm, “The double points of Mathieu's differential equation”, Math. Comp., 23:105 (1969), 97–108 | Zbl

[12] E. A. Solov'ev, “The advanced adiabatic approach and inelastic transitions via hidden crossings”, J. Physics B: Atomic, Molecular and Optical Physics, 38 (2005), R153–R194