Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_7_a16, author = {S. L. Skorokhodov}, title = {Evaluation of eigenvalues and eigenfunctions of {Coulomb} spheroidal wave equation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {111--116}, publisher = {mathdoc}, volume = {27}, number = {7}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_7_a16/} }
S. L. Skorokhodov. Evaluation of eigenvalues and eigenfunctions of Coulomb spheroidal wave equation. Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 111-116. http://geodesic.mathdoc.fr/item/MM_2015_27_7_a16/
[1] I. V. Komarov, L. I. Ponomarev, S. Iu. Slavianov, Sferoidalnye i kulonovskie sferoidalnye funktsii, Nauka, M., 1976
[2] D. B. Khrebtukov, “The exact numerical solution of a Schrodinger equation with two-Coulomb centers plus oscillator potential”, J. Physics A: Mathem. and General, 25 (1992), 3319–3328 | Zbl
[3] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Washington D. C., 1964
[4] L.-W. Li, X.-K. Kang, M.-S. Leong, Spheroidal Wave Functions in Electromagnetic Theory, Wiley, N.-Y., 2001
[5] P. E. Falloon, P. C. Abbott, J. B. Wang, “Theory and Computation of the Spheroidal Wave Functions”, J. Physics A: Mathem. and General, 36 (2003), 5477–5495 | Zbl
[6] B. E. Barrowes, K. O'Neill, T. M. Grzegorczyk, J. A. Kong, “On the Asymptotic Expansion of the Spheroidal Wave Function and Its Eigenvalues for Complex Size Parameter”, Studies in Applied Mathematics, 113:3 (2004), 271–301 | Zbl
[7] E. L. Ince, Ordinary Differential Equations, Dover Publications, N.-Y., 1926
[8] S. L. Skorokhodov, D. V. Khristoforov, “Calculation of the branch points of the eigenfunctions corresponding to wave spheroidal functions”, Computational Mathematics and Mathematical Physics, 46:7 (2006), 1132–1146
[9] S. L. Skorokhodov, D. V. Khristoforov, “Calculation of the branch points of the eigenvalues of the Coulomb spheroidal wave equation”, Computational Mathematics and Mathematical Physics, 47:11 (2007), 1802–1818
[10] A. A. Abramov, S. V. Kurochkin, “Highly accurate calculation of angular spheroidal functions”, Computational Mathematics and Mathematical Physics, 46:1 (2006), 10–15 | Zbl
[11] G. Blanch, D. S. Clemm, “The double points of Mathieu's differential equation”, Math. Comp., 23:105 (1969), 97–108 | Zbl
[12] E. A. Solov'ev, “The advanced adiabatic approach and inelastic transitions via hidden crossings”, J. Physics B: Atomic, Molecular and Optical Physics, 38 (2005), R153–R194