Analytical calculations of derivation partial differential equations for coefficient Kantorovich functions
Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 103-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider application Kantorovich method to the solution of Maxwell's equations in an integrated optical waveguide with an irregular change of parameters along two horizontal directions. We conducted analytic calculations to find a system of differential equations for the coefficient Kantorovich functions using computer algebra system Maple.
Keywords: integrated optics, smoothly-irregular waveguides, adiabatic waveguide modes, numerical modeling, analytical calculations.
Mots-clés : coefficient functions
@article{MM_2015_27_7_a15,
     author = {A. L. Sevastyanov and L. A. Sevastianov and A. A. Tyutyunnik},
     title = {Analytical calculations of derivation partial differential equations for coefficient {Kantorovich} functions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {103--110},
     publisher = {mathdoc},
     volume = {27},
     number = {7},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_7_a15/}
}
TY  - JOUR
AU  - A. L. Sevastyanov
AU  - L. A. Sevastianov
AU  - A. A. Tyutyunnik
TI  - Analytical calculations of derivation partial differential equations for coefficient Kantorovich functions
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 103
EP  - 110
VL  - 27
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_7_a15/
LA  - ru
ID  - MM_2015_27_7_a15
ER  - 
%0 Journal Article
%A A. L. Sevastyanov
%A L. A. Sevastianov
%A A. A. Tyutyunnik
%T Analytical calculations of derivation partial differential equations for coefficient Kantorovich functions
%J Matematičeskoe modelirovanie
%D 2015
%P 103-110
%V 27
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_7_a15/
%G ru
%F MM_2015_27_7_a15
A. L. Sevastyanov; L. A. Sevastianov; A. A. Tyutyunnik. Analytical calculations of derivation partial differential equations for coefficient Kantorovich functions. Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 103-110. http://geodesic.mathdoc.fr/item/MM_2015_27_7_a15/

[1] D. Marcuse, Light Transmission Optics, Van Nostrand Reinhold, NY, 1972, 444 pp.

[2] V. V. Shevchenko, Plavnye perekhody v otkrytykh volnovodakh, Nauka, M., 1969

[3] A. G. Sveshnikov, A. S. Ilinskii, “Raschet volnovodnogo perekhoda slozhnoi formy”, ZhVM i MF, 3:3 (1963), 478–488

[4] A. L. Sevastianov, A. A. Egorov, “Teoreticheskii analiz volnovodnogo rasprostraneniia elektromagnitnykh voln v dielektricheskikh plavno-nereguliarnikh integrlnykh strukturakh”, Optika i spektroskopiia, 105:4 (2008), 632–640

[5] A. A. Egorov, A. L. Sevast'yanov, L. A. Sevast'yanov, “Structure of modes of a smoothly irregular integrated-optical four-layer three-dimensional waveguide”, Quantum Electronics, 39:6 (2009), 566–574

[6] A. A. Egorov, K. P. Lovetskiy, A. L. Sevast'yanov, L. A. Sevast'yanov, “Simulation of guided modes (eigenmodes) and synthesis of a thin-film generalised waveguide Luneburg lens in the zero-order vector approximation”, Quantum Electronics, 40:9 (2010), 830–836

[7] A. A. Egorov, A. L. Sevastianov, E. A. Airian, K. P. Lovetskii, L. A. Sevastianov, “Adiabaticheskie mody plavno-nereguliarnogo opticheskogo volnovoda: nulevoe priblizhenie vektornoi teorii”, Matematicheskoe modelirovanie, 22:8 (2010), 42–54 | Zbl

[8] L. A. Sevastyanov, A. L. Sevastyanov, A. A. Tyutyunnik, “Analytical Calculations in Maple to Implement the Method of Adiabatic Modes for Modelling Smoothly Irregular Integrated Optical Waveguide Structures”, LNCS, 8660, 2014, 419–431 | Zbl

[9] L. A. Sevastianov, A. A. Egorov, A. L. Sevastyanov, “Method of adiabatic modes in studying problems of smoothly irregular open waveguide structures”, Physics of Atomic Nuclei, 76:2 (2013), 224–239

[10] L. V. Kantorovich, V. I. Krylov, Priblizhennye metody vysshego analiza, Fizmatgiz, L., 1962