Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_7_a12, author = {V. O. Podryga}, title = {Determination of real gas macroparameters by molecular dynamics}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {80--90}, publisher = {mathdoc}, volume = {27}, number = {7}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_7_a12/} }
V. O. Podryga. Determination of real gas macroparameters by molecular dynamics. Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 80-90. http://geodesic.mathdoc.fr/item/MM_2015_27_7_a12/
[1] D. Resnick, “Nanoimprint lithography”, Nanolithography. The art of fabricating nanoelectronic and nanophotonic devices and systems, ed. M. Feldman, Woodhead Publishing Limited, 2014, 600 pp.
[2] A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, V. Fomin, Cold Spray Technology, Elsevier Science, Amsterdam, 2007, 336 pp.
[3] A. P. Alkhimov, S. V. Klinkov, V. F. Kosarev, V. M. Fomin, Kholodnoe gazodinamicheskoe napylenie. Teoriia i praktika, Fizmatlit, M., 2010, 536 pp.
[4] D. Frenkel, B. Smit, Understanding Molecular Simulation. From Algorithm to Applications, Academic Press, NY, 2002, 638 pp.
[5] J. M. Haile, Molecular Dynamics Simulations. Elementary Methods, John Wiley Sons Inc., NY, 1992, 489 pp.
[6] G. E. Norman, V. V. Stegailov, “Stochastic theory of the classical molecular dynamics method”, Mathematical Models and Computer Simulations, 5:4 (2013), 305–333 | Zbl
[7] G. E. Norman, V. V. Stegailov, “Stochastic and dynamic properties of molecular dynamics systems: Simple liquids, plasma and electrolytes, polymers”, Computer Physics Communications, 147 (2002), 678–683 | Zbl
[8] V. O. Podryga, “Molecular Dynamics Method for Simulation of Thermodynamic Equilibrium”, Mathematical Models and Computer Simulations, 3:3 (2011), 381–388 | Zbl
[9] J. E. Lennard-Jones, “Cohesion”, Proceedings of the Physical Society, 43:5 (1931), 461–482
[10] L. R. Fokin, A. N. Kalashnikov, “The transport properties of an N2-H2 mixture of rarefied gases in the EPIDIF database”, High Temperature, 47:5 (2009), 643–655
[11] L. Verlet, “Computer «experiments» on classical fluids. I: Thermodynamical properties of Lennard–Jones molecules”, Phys. Rev., 159 (1967), 98–103
[12] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren et al., “Molecular dynamics with coupling to an external bath”, J. Chem. Phys., 81 (1984), 3684–3690
[13] V. O. Podryga, S. V. Poliakov, “Molekuliarno-dinamicheskoe modelirovanie ustanovleniia termodinamicheskogo ravnovesiia v nikele”, Matematicheskoe modelirovanie, 27:3 (2015), 3–19
[14] V. O. Podryga, S. V. Poliakov, D. V. Puzyrkov, “Superkompiuternoe molekuliarnoe modelirovanie termodinamicheskogo ravnovesiia v mikrosistemakx gaz-metall”, Vychislitelnye metody i programmirovanie, 16:1 (2015), 123–138
[15] D. C. Rapaport, The Art of Molecular Dynamics Simulations, Second Edition, Cambridge University Press, 2004, 565 pp.
[16] R. W. Hockney, J. W. Eastwood, Computer simulation using particles, McGraw-Hill Inc., 1981, 540 pp.
[17] D. W. Heermann, Computer Simulation Methods in Theoretical Physics, Springer-Verlag, 1986, 148 pp.
[18] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, NY, 1987, 385 pp. | Zbl
[19] J. L. Lebowitz, J. K. Percus, L. Verlet, “Ensemble Dependence of Fluctuations with Application to Machine Computations”, Phys. Rev., 153:1 (1967), 250–254
[20] J. L. Lebowitz, J. K. Percus, “Thermodynamic Properties of Small Systems”, Phys. Rev., 124:6 (1961), 1673–1681 | Zbl
[21] S. P. Protsenko, V. G. Baidakov, Z. P. Kozlova, “Molekuliarno-dinamicheskoe modelirovanie metastabilnykh fazovykh sostoianii. Termodinamicheskie svoistva lennard-dzhonsovskoi sistemy”, Vestnik UGATU, 2014, no. 1(62), 214–223
[22] E. D. Gaiduk, V. A. Saleev, “Modelirovanie iavlenii perenosa fullerenov v zhidkosti metodom molekuliarnoi dinamiki”, Vestnik SamGU. Estestvenno-nauchn. seriia, 2011, no. 5(86), 93–103
[23] I. K. Kikoin (ed.), Tablitsy fizicheskikh velichin. Spravochnik, Atomizdat, M., 1976, 1008 pp.