Determination of real gas macroparameters by molecular dynamics
Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 80-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the molecular dynamics calculations of real gases and mixtures thereof macroparameters at room and low temperatures. Necessity of such calculations is caused by both the lack of experimental data on the gases properties in selected parameters ranges and problems of multiscale modeling of technically complex microsystems that use gas medium as transport agents. In work modern molecular-dynamic approach to calculation of gas macroparameters is set out in a concentrated form, as well as its approbation is carried out by the example of the calculation of nitrogen macroparameters at room and lower temperatures. In numerical experiments the temperature dependences of pressure, kinetic, potential, and total energies, enthalpy, coefficients of compressibility and heat capacity at constant volume are obtained, which agree well with the theoretical and experimental data. Further development of the methodology will be related to calculation of the coefficients of viscosity and thermal conductivity, as well as a generalization to the case of a gas mixture.
Keywords: molecular dynamics, nitrogen, macroparameters of gas area.
@article{MM_2015_27_7_a12,
     author = {V. O. Podryga},
     title = {Determination of real gas macroparameters by molecular dynamics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {80--90},
     publisher = {mathdoc},
     volume = {27},
     number = {7},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_7_a12/}
}
TY  - JOUR
AU  - V. O. Podryga
TI  - Determination of real gas macroparameters by molecular dynamics
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 80
EP  - 90
VL  - 27
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_7_a12/
LA  - ru
ID  - MM_2015_27_7_a12
ER  - 
%0 Journal Article
%A V. O. Podryga
%T Determination of real gas macroparameters by molecular dynamics
%J Matematičeskoe modelirovanie
%D 2015
%P 80-90
%V 27
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_7_a12/
%G ru
%F MM_2015_27_7_a12
V. O. Podryga. Determination of real gas macroparameters by molecular dynamics. Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 80-90. http://geodesic.mathdoc.fr/item/MM_2015_27_7_a12/

[1] D. Resnick, “Nanoimprint lithography”, Nanolithography. The art of fabricating nanoelectronic and nanophotonic devices and systems, ed. M. Feldman, Woodhead Publishing Limited, 2014, 600 pp.

[2] A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, V. Fomin, Cold Spray Technology, Elsevier Science, Amsterdam, 2007, 336 pp.

[3] A. P. Alkhimov, S. V. Klinkov, V. F. Kosarev, V. M. Fomin, Kholodnoe gazodinamicheskoe napylenie. Teoriia i praktika, Fizmatlit, M., 2010, 536 pp.

[4] D. Frenkel, B. Smit, Understanding Molecular Simulation. From Algorithm to Applications, Academic Press, NY, 2002, 638 pp.

[5] J. M. Haile, Molecular Dynamics Simulations. Elementary Methods, John Wiley Sons Inc., NY, 1992, 489 pp.

[6] G. E. Norman, V. V. Stegailov, “Stochastic theory of the classical molecular dynamics method”, Mathematical Models and Computer Simulations, 5:4 (2013), 305–333 | Zbl

[7] G. E. Norman, V. V. Stegailov, “Stochastic and dynamic properties of molecular dynamics systems: Simple liquids, plasma and electrolytes, polymers”, Computer Physics Communications, 147 (2002), 678–683 | Zbl

[8] V. O. Podryga, “Molecular Dynamics Method for Simulation of Thermodynamic Equilibrium”, Mathematical Models and Computer Simulations, 3:3 (2011), 381–388 | Zbl

[9] J. E. Lennard-Jones, “Cohesion”, Proceedings of the Physical Society, 43:5 (1931), 461–482

[10] L. R. Fokin, A. N. Kalashnikov, “The transport properties of an N2-H2 mixture of rarefied gases in the EPIDIF database”, High Temperature, 47:5 (2009), 643–655

[11] L. Verlet, “Computer «experiments» on classical fluids. I: Thermodynamical properties of Lennard–Jones molecules”, Phys. Rev., 159 (1967), 98–103

[12] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren et al., “Molecular dynamics with coupling to an external bath”, J. Chem. Phys., 81 (1984), 3684–3690

[13] V. O. Podryga, S. V. Poliakov, “Molekuliarno-dinamicheskoe modelirovanie ustanovleniia termodinamicheskogo ravnovesiia v nikele”, Matematicheskoe modelirovanie, 27:3 (2015), 3–19

[14] V. O. Podryga, S. V. Poliakov, D. V. Puzyrkov, “Superkompiuternoe molekuliarnoe modelirovanie termodinamicheskogo ravnovesiia v mikrosistemakx gaz-metall”, Vychislitelnye metody i programmirovanie, 16:1 (2015), 123–138

[15] D. C. Rapaport, The Art of Molecular Dynamics Simulations, Second Edition, Cambridge University Press, 2004, 565 pp.

[16] R. W. Hockney, J. W. Eastwood, Computer simulation using particles, McGraw-Hill Inc., 1981, 540 pp.

[17] D. W. Heermann, Computer Simulation Methods in Theoretical Physics, Springer-Verlag, 1986, 148 pp.

[18] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, NY, 1987, 385 pp. | Zbl

[19] J. L. Lebowitz, J. K. Percus, L. Verlet, “Ensemble Dependence of Fluctuations with Application to Machine Computations”, Phys. Rev., 153:1 (1967), 250–254

[20] J. L. Lebowitz, J. K. Percus, “Thermodynamic Properties of Small Systems”, Phys. Rev., 124:6 (1961), 1673–1681 | Zbl

[21] S. P. Protsenko, V. G. Baidakov, Z. P. Kozlova, “Molekuliarno-dinamicheskoe modelirovanie metastabilnykh fazovykh sostoianii. Termodinamicheskie svoistva lennard-dzhonsovskoi sistemy”, Vestnik UGATU, 2014, no. 1(62), 214–223

[22] E. D. Gaiduk, V. A. Saleev, “Modelirovanie iavlenii perenosa fullerenov v zhidkosti metodom molekuliarnoi dinamiki”, Vestnik SamGU. Estestvenno-nauchn. seriia, 2011, no. 5(86), 93–103

[23] I. K. Kikoin (ed.), Tablitsy fizicheskikh velichin. Spravochnik, Atomizdat, M., 1976, 1008 pp.