About universal constants of the stock in models of competition
Matematičeskoe modelirovanie, Tome 27 (2015) no. 6, pp. 81-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main models of the competition of populations in the changing environment are proved and investigated. It is shown that in the periodic temporary environment for competitive advantage productivity (initial) population has to surpass productivity of the competitors with some stock. The constant of a stock can be chosen universal, not depending on number of competitors. It is established that spatially heterogeneous midium the constant of a stock depends on number of areas in a reservoir. It beyond all bounds therefore is no universal constant of a stock.
Keywords: model, competition, changing environment, selection criteria, constant of a stock.
@article{MM_2015_27_6_a5,
     author = {V. G. Il'ichev},
     title = {About universal constants of the stock in models of competition},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {81--98},
     publisher = {mathdoc},
     volume = {27},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_6_a5/}
}
TY  - JOUR
AU  - V. G. Il'ichev
TI  - About universal constants of the stock in models of competition
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 81
EP  - 98
VL  - 27
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_6_a5/
LA  - ru
ID  - MM_2015_27_6_a5
ER  - 
%0 Journal Article
%A V. G. Il'ichev
%T About universal constants of the stock in models of competition
%J Matematičeskoe modelirovanie
%D 2015
%P 81-98
%V 27
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_6_a5/
%G ru
%F MM_2015_27_6_a5
V. G. Il'ichev. About universal constants of the stock in models of competition. Matematičeskoe modelirovanie, Tome 27 (2015) no. 6, pp. 81-98. http://geodesic.mathdoc.fr/item/MM_2015_27_6_a5/

[1] Vito Volterra, Lecons sur la Theory mathematique de la Lutte pour la Vie, Gauthier-Villars, Paris, 1931, 214 pp. | MR

[2] V. G. Il'ichev, “Universal Margin Factors and Selection Criteria in Variable Environment”, Math. Notes, 70:5 (2001), 628–639 | MR | Zbl

[3] J. D. Murray, Lectures on nonlinear-differential-equation. Models in Biology, Clarendon-Press, Oxford, 1977, 370 pp.

[4] Ju. M. Svirezhev, Nonlineinye volny, dissipativnye structury i katastrofy v ekologii, Nauka, M., 1987, 366 pp. | MR

[5] V. I. Arnold, Ordinary Differential Equations, Spinger Science Business Media, Berlin, 1992, 334 pp. | MR | MR

[6] D. E. Contois, “Kinetics of bacterial growth relationship between population density and specific growth rate of continuous culture”, J. Gen. Microbiol., 1959, no. 1–2, 40–50

[7] V. G. Ilichev, “O tekhnologii postroeniia imitatsionnykh modelei ekologicheskikh sistem. Mekhanizmy adaptatsii”, Matemat. Modelirovanie, 4:3 (1992), 11–19

[8] V. G. Ilichev, O. A. Ilicheva, V. Ju. Voronin, “Kriterii otbora v sistemakh “vse protiv vsekh” i “vse protiv odnogo””, Obozrenie prikladnoi i promyshlennoi matematiki, 6:2 (1999), 311–317 | MR | Zbl

[9] V. G. Ilichev, “A portion of the mathematical theory of competition of biological species in the varying medium”, Diff. Equat., 27:3 (1991), 307–314 | MR | Zbl

[10] V. G. Ilichev, Ustoichivost, adaptatsiia i upravlenie v ekologicheskikh sistemakh, Fizmatlit, M., 2009, 192 pp.

[11] M. A. Krasnoselskii, P. P. Zabreiko, Geometrichskie metody nelineinogo analiza, Nauka, M., 1975, 510 pp. | MR

[12] V. G. Ilichev, ““Nelineinye skelety” v prostranstvenno-vremennykh modeliakh ekologii”, Matemat. Modelirovanie, 23:2 (2011), 125–147 | MR | Zbl