Parallel Monte Carlo for entropy-robust estimation
Matematičeskoe modelirovanie, Tome 27 (2015) no. 6, pp. 14-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method of entropy-robust nonparametric estimation of probability density functions (PDF) is proposed in the paper. Characteristics of dynamic randomized models with structured nonlinearities are estimated under small amount of data. We have shown that optimal PDF are of exponential class, where parameters are Lagrange multipliers. To determine the parameters a system of equations with integral components has been built. We developed an algorithm for solving this problem, based on parallel Monte Carlo techniques. Estimates of solutions’s accuracy for the class of given integral components and probability of its achivement have been obtained. The method was applied to the problem with nonlinear dynamic system with given structured nonlinearity.
Keywords: entropy, robustness, randomized model, structure of exponential nonlinearity, functional entropy-linear programming, Monte Carlo trials, numerical integration, entropy estimation, small amounts of data, graphic processor.
@article{MM_2015_27_6_a1,
     author = {Y. S. Popkov and A. Y. Popkov and B. S. Darkhovskiy},
     title = {Parallel {Monte} {Carlo} for entropy-robust estimation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {14--32},
     publisher = {mathdoc},
     volume = {27},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_6_a1/}
}
TY  - JOUR
AU  - Y. S. Popkov
AU  - A. Y. Popkov
AU  - B. S. Darkhovskiy
TI  - Parallel Monte Carlo for entropy-robust estimation
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 14
EP  - 32
VL  - 27
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_6_a1/
LA  - ru
ID  - MM_2015_27_6_a1
ER  - 
%0 Journal Article
%A Y. S. Popkov
%A A. Y. Popkov
%A B. S. Darkhovskiy
%T Parallel Monte Carlo for entropy-robust estimation
%J Matematičeskoe modelirovanie
%D 2015
%P 14-32
%V 27
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_6_a1/
%G ru
%F MM_2015_27_6_a1
Y. S. Popkov; A. Y. Popkov; B. S. Darkhovskiy. Parallel Monte Carlo for entropy-robust estimation. Matematičeskoe modelirovanie, Tome 27 (2015) no. 6, pp. 14-32. http://geodesic.mathdoc.fr/item/MM_2015_27_6_a1/

[1] Yu. S. Popkov, A. Yu. Popkov, Yu. N. Lysak, “Estimation of characteristics of randomized static models of data (Entropy-robust approach)”, Automation and Remote Control, 74:11 (2013), 1863–1877 | MR | Zbl

[2] Yu. S. Popkov, A. Yu. Popkov, Yu. N. Lysak, “Estimating the characteristics of randomized dynamic data models (the Entropy-Robust Approach)”, Automation and Remote Control, 75:5 (2014), 872–879 | MR | MR | Zbl

[3] E. T. Jaynes, “Information Theory and Statistical Mechanics”, Physics Review, 106 (1957), 620–630 | MR | Zbl

[4] A. Golan, “Information and Entropy Econometrics? A Review and Synthesis”, Foundations and Trends in Econometrics, 2:1–2 (2008), 1–145 | MR

[5] Ia. Z. Tsypkin, Y. S. Popkov, Teoriia nelineinykh impulsnykh system, Nauka, M., 1973

[6] A. M. Rubinov, Abstact Convexity and Global Optimization, Kluwer, Dordrecht, 2000 | MR

[7] A. S. Strekalovsii, Elementy nevypukloi optimizatsii, Nauka, Novosibirsk, 2003, 356 pp.

[8] R. Batti, M. Brunato, F. Mascia, Reactive Search and Intelligent Optimazation, Operation Reasearch/Computer Science Interfaces Series, 45, Springer, 2008 | MR

[9] R. G. Strongin, Yu. D. Sergeyev, Global Optimization with Non-Convex Constraints, Kluwer Academic Publishers, Dordrecht, 2000, 696 pp. | MR | Zbl

[10] Ya. D. Sergeyev, R. G. Strongin, D. Lera, Introduction to global optimization exploiting space-filling curves, Springer, NY, 2013 | MR | Zbl

[11] I. M. Sobol, Chislennye metody Monte-Karlo, Nauka, M., 1973 | MR

[12] Z. B. Zabinsky, R. L. Smith, F. McDonald, H. E. Romeijn, D. E. Kaufman, “Improving Hit-and-Run for Global Optimization”, Journal of Global Optimization, 3 (1993), 171–192 | MR | Zbl

[13] A. Zhigljavsky, Theory of Global Random Search, Mathematics and Applications, Kluwer Academic Publishers, Dordrecht, 1991 | MR

[14] R. E. Caflisch, “Monte Carlo and quasi-Monte Carlo methods”, Acta Numerica, 1998, 1–49 | MR | Zbl

[15] I. Foster, Designing and Building Parallel Programs: Consepts and Tools for Parallel Software Engineering, Addison Wesley Longman Publishing Co., Boston, MA, 1995

[16] Voevodin V. V., Parallel Calculations, BHV-Peterburg, SPb., 2004

[17] L. F. Shampine, “MatLab program for quadrature in 2D”, Applied Mathematics and Computation, 202:1 (2008), 266–274 | MR | Zbl

[18] I. M. Gelfand, S. V. Fomin, Calculus of Variations, Prentice-Hall, Englewood Cliffs, NY, 1963 | MR