Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_5_a4, author = {B. N. Chetverushkin}, title = {Kinetic models for supercomputer simulation continuous mechanic problems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {65--79}, publisher = {mathdoc}, volume = {27}, number = {5}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_5_a4/} }
B. N. Chetverushkin. Kinetic models for supercomputer simulation continuous mechanic problems. Matematičeskoe modelirovanie, Tome 27 (2015) no. 5, pp. 65-79. http://geodesic.mathdoc.fr/item/MM_2015_27_5_a4/
[1] M. N. Kogan, Dinamika razrezhennogo gaza, Nauka, M., 1967, 440 pp.
[2] J. O. Hircshfelder, Ch. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids, J. Wiley Sons, New-York, 1954, xxvi+1219 pp.
[3] M. I. Volchinskaia, A. N. Pavlov, B. N. Chetverushkin, “Ob odnoi skheme integrirovaniia uravnenii gazovoi dinamiki”, Preprinty IPM im. M. V. Keldysha AN SSSR, 1983, 113, 12 pp.
[4] T. G. Elizarova, B. N. Chetverushkin, Ispolzovanie kineticheskikh modelei dlia rascheta gazodinamicheskikh techenii, Nauka, M., 1986, 261–278
[5] B. N. Chetverushkin, Kinetic schemes and Quasigasdynamic system of equations, CIMNE, Barcelona, 2008, 328 pp.
[6] S. Succi, The Lattice Boltzmann equation in fluid dynamics and beyond, Claredon Press, Oxford, 2001, 304 pp. | MR
[7] D. V. Bisikalo, A. G. Zhilkin, A. A. Boiarchuk, Gazodinamika tesnykh dvoinykh zvezd, Fizmatlit, M., 2013, 632 pp.
[8] K. S. Basniev, I. N. Kochina, V. M. Maksimov, Podzemnaia gidrodinamika, Nedra, M., 1993, 416 pp.
[9] B. N. Chetverushkin, “Resolution Limits of Continuous Media Mode and their Mathematical Formulations”, Mathematical Models and Computer Simulations, 5:3 (2013), 266–279 | MR | MR | Zbl
[10] V. E. Golant, A. P. Zhilinskii, I. E. Sakharov, Osnovy fiziki plazmy, Atomizdat, M., 1977
[11] B. N. Chetverushkin, A. V. Gulin, “Explicit Schemes and Numerical Simulation Using Ultrahigh-Performance Computer Systems”, Doklady Mathematics, 86:2 (2013), 681–683 | MR | Zbl
[12] S. I. Repin, B. N. Chetverushkin, “Estimates of the Difference between Approximate Solutions of the Cauchy Problems for the Parabolic Diffusion Equation and a Hyperbolic Equation with a Small Parameter”, Doklady Mathematics, 88:3 (2013), 417–420 | MR | Zbl
[13] N. S. Bakhvalov, G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984, 352 pp.
[14] A. A. Kuleshov, B. N. Chetverushkin, “Problemy primeneniia superkompiuterov dlia resheniia zadach neftegazovogo kompleksa”, Vestnik TsKR Rosnedra, 3 (2013), 9–14
[15] T. G. Elizarova, I. A. Graur, I. C. Lengrand, A. Chpoun, “Rarefied gas flow simulation based on quasigasdynamics eqation”, AIAA J., 33:12 (1995), 2316–2324 | Zbl
[16] A. V. Lukshin, L. V. Iarchuk, “O metode dekompozitsii oblastei dlia uravneniia Boltsmana”, Differentsialnye uravneniia, 34:7 (1998), 958–964 | MR | Zbl
[17] A. A. Lyupa, D. N. Morozov, M. A. Trapeznikova, B. N. Chetverushkin, N. G. Churbanova, “Three Phase Filtration Modeling by Explicit Methods on Hybrid Computer Systems”, Mathematical Models and Computer Simulations, 6:6 (2014), 551–559 | Zbl
[18] V. A. Gasilov, V. G. Novikov, B. N. Chetverushkin, O. G. Olkhovskaia, E. Iu. Dorofeeva, I. M. Boiko, “Proekt NuFuSe i razrabotka RMGD metodik dlia predskazatelnogo modelirovaniia protsessov v energeticheskikh termoiadernykh ustanovkakh”, Preprinty IPM im. M. V. Keldysha RAN, 2014, 005, 24 pp. | Zbl
[19] B. N. Chetverushkin, N. D'Ascenzo, V. I. Saveliev, “Kinetically Consistent Magnetogasdynamics Equations and Their Use in Supercomputer Computations”, Doklady Mathematics, 90:1 (2014), 495–498 | Zbl
[20] B. N. Chetverushkin, N. D. Achenzo, S. A. Ishanov, V. I. Saveliev, “Hyperbolic type explicit kinetic schemes of magneto gas dynamics for High performance computing systems”, Russian Journ. Numer. Anal. and Math. Modeling, 30:1 (2015), 27–36 | MR | Zbl
[21] A. A. Davydov, B. N. Chetverushkin, E. V. Shil'nikov, “Simulating Flows of Incompressible and Weakly Compressible Fluids on Multicore Hybrid Computer Systems”, Computational Mathematics and Mathematical Physics, 50:12 (2010), 2157–2165 | MR | Zbl
[22] G. A. Sod, “A survey of several finite difference methods for systems of nonlinear hyperbolic conservation lows”, J. Comput. Phys., 1978 | MR