Kinetic models for supercomputer simulation continuous mechanic problems
Matematičeskoe modelirovanie, Tome 27 (2015) no. 5, pp. 65-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using kinetic models of one particle distribution function for supercomputer simulation of continuous mechanic problems are discussed. The construction of such models is based on existence space and time scale less of which there is no physical sense for detalization of numerical solution. This method applied for simulation $3\mathrm{D}$ problem for which approximation used the fine meshes with more then $10^9$ numerical nodes.
Keywords: high performance computing, kinetic models, continium medium.
Mots-clés : explisit schemes
@article{MM_2015_27_5_a4,
     author = {B. N. Chetverushkin},
     title = {Kinetic models for supercomputer simulation continuous mechanic problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--79},
     publisher = {mathdoc},
     volume = {27},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_5_a4/}
}
TY  - JOUR
AU  - B. N. Chetverushkin
TI  - Kinetic models for supercomputer simulation continuous mechanic problems
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 65
EP  - 79
VL  - 27
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_5_a4/
LA  - ru
ID  - MM_2015_27_5_a4
ER  - 
%0 Journal Article
%A B. N. Chetverushkin
%T Kinetic models for supercomputer simulation continuous mechanic problems
%J Matematičeskoe modelirovanie
%D 2015
%P 65-79
%V 27
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_5_a4/
%G ru
%F MM_2015_27_5_a4
B. N. Chetverushkin. Kinetic models for supercomputer simulation continuous mechanic problems. Matematičeskoe modelirovanie, Tome 27 (2015) no. 5, pp. 65-79. http://geodesic.mathdoc.fr/item/MM_2015_27_5_a4/

[1] M. N. Kogan, Dinamika razrezhennogo gaza, Nauka, M., 1967, 440 pp.

[2] J. O. Hircshfelder, Ch. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids, J. Wiley Sons, New-York, 1954, xxvi+1219 pp.

[3] M. I. Volchinskaia, A. N. Pavlov, B. N. Chetverushkin, “Ob odnoi skheme integrirovaniia uravnenii gazovoi dinamiki”, Preprinty IPM im. M. V. Keldysha AN SSSR, 1983, 113, 12 pp.

[4] T. G. Elizarova, B. N. Chetverushkin, Ispolzovanie kineticheskikh modelei dlia rascheta gazodinamicheskikh techenii, Nauka, M., 1986, 261–278

[5] B. N. Chetverushkin, Kinetic schemes and Quasigasdynamic system of equations, CIMNE, Barcelona, 2008, 328 pp.

[6] S. Succi, The Lattice Boltzmann equation in fluid dynamics and beyond, Claredon Press, Oxford, 2001, 304 pp. | MR

[7] D. V. Bisikalo, A. G. Zhilkin, A. A. Boiarchuk, Gazodinamika tesnykh dvoinykh zvezd, Fizmatlit, M., 2013, 632 pp.

[8] K. S. Basniev, I. N. Kochina, V. M. Maksimov, Podzemnaia gidrodinamika, Nedra, M., 1993, 416 pp.

[9] B. N. Chetverushkin, “Resolution Limits of Continuous Media Mode and their Mathematical Formulations”, Mathematical Models and Computer Simulations, 5:3 (2013), 266–279 | MR | MR | Zbl

[10] V. E. Golant, A. P. Zhilinskii, I. E. Sakharov, Osnovy fiziki plazmy, Atomizdat, M., 1977

[11] B. N. Chetverushkin, A. V. Gulin, “Explicit Schemes and Numerical Simulation Using Ultrahigh-Performance Computer Systems”, Doklady Mathematics, 86:2 (2013), 681–683 | MR | Zbl

[12] S. I. Repin, B. N. Chetverushkin, “Estimates of the Difference between Approximate Solutions of the Cauchy Problems for the Parabolic Diffusion Equation and a Hyperbolic Equation with a Small Parameter”, Doklady Mathematics, 88:3 (2013), 417–420 | MR | Zbl

[13] N. S. Bakhvalov, G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984, 352 pp.

[14] A. A. Kuleshov, B. N. Chetverushkin, “Problemy primeneniia superkompiuterov dlia resheniia zadach neftegazovogo kompleksa”, Vestnik TsKR Rosnedra, 3 (2013), 9–14

[15] T. G. Elizarova, I. A. Graur, I. C. Lengrand, A. Chpoun, “Rarefied gas flow simulation based on quasigasdynamics eqation”, AIAA J., 33:12 (1995), 2316–2324 | Zbl

[16] A. V. Lukshin, L. V. Iarchuk, “O metode dekompozitsii oblastei dlia uravneniia Boltsmana”, Differentsialnye uravneniia, 34:7 (1998), 958–964 | MR | Zbl

[17] A. A. Lyupa, D. N. Morozov, M. A. Trapeznikova, B. N. Chetverushkin, N. G. Churbanova, “Three Phase Filtration Modeling by Explicit Methods on Hybrid Computer Systems”, Mathematical Models and Computer Simulations, 6:6 (2014), 551–559 | Zbl

[18] V. A. Gasilov, V. G. Novikov, B. N. Chetverushkin, O. G. Olkhovskaia, E. Iu. Dorofeeva, I. M. Boiko, “Proekt NuFuSe i razrabotka RMGD metodik dlia predskazatelnogo modelirovaniia protsessov v energeticheskikh termoiadernykh ustanovkakh”, Preprinty IPM im. M. V. Keldysha RAN, 2014, 005, 24 pp. | Zbl

[19] B. N. Chetverushkin, N. D'Ascenzo, V. I. Saveliev, “Kinetically Consistent Magnetogasdynamics Equations and Their Use in Supercomputer Computations”, Doklady Mathematics, 90:1 (2014), 495–498 | Zbl

[20] B. N. Chetverushkin, N. D. Achenzo, S. A. Ishanov, V. I. Saveliev, “Hyperbolic type explicit kinetic schemes of magneto gas dynamics for High performance computing systems”, Russian Journ. Numer. Anal. and Math. Modeling, 30:1 (2015), 27–36 | MR | Zbl

[21] A. A. Davydov, B. N. Chetverushkin, E. V. Shil'nikov, “Simulating Flows of Incompressible and Weakly Compressible Fluids on Multicore Hybrid Computer Systems”, Computational Mathematics and Mathematical Physics, 50:12 (2010), 2157–2165 | MR | Zbl

[22] G. A. Sod, “A survey of several finite difference methods for systems of nonlinear hyperbolic conservation lows”, J. Comput. Phys., 1978 | MR