Analysis of instantaneous cardiac rhythm in a model multi-fractal dynamics based on Holter monitoring
Matematičeskoe modelirovanie, Tome 27 (2015) no. 4, pp. 16-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

For specific analysis of variability of RR-intervals of cardiac rhythm, the method of measurement of instantaneous cardiac rhythm (ICR) represented by a multifractal dynamical model (MDM) has been developed. The advantages of this method compared with statistical methods of analysis of RR-intervals used have been demonstrated. The method allows the possible cardiovascular system catastrophes to be predicted. According to the data from the Holter recording technique and using a developed program system, we have plotted ICR curves, ICR piecewise linear trend and variability charts for three randomly chosen time intervals. The ICR self-similarity (fractality) in agreement to better than 5% has been shown based on the explicit data. Based on the ICR data, the MDM parameters have been calculated. The analysis of dynamics of these parameters has been conducted, and their compliance with the examined patient status has been discovered. The relevance of ICR examination within the framework of the MDM is closely related to the necessity of recognition of new markers of adverse cardiovascular episodes. The research performed shows that the results obtained can be taken as a basis for development of a new mathematical method of ICR examination based on the Holter recording technique.
Keywords: instant cardiac rhythm, multi-fractal dynamics, piecewise-linear trend, self-similarity.
Mots-clés : fractal dimension
@article{MM_2015_27_4_a1,
     author = {A. P. Ivanov and A. N. Kudinov and D. Y. Lebedev and V. P. Tsvetkov and I. V. Tsvetkov},
     title = {Analysis of instantaneous cardiac rhythm in a model multi-fractal dynamics based on {Holter} monitoring},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {16--30},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_4_a1/}
}
TY  - JOUR
AU  - A. P. Ivanov
AU  - A. N. Kudinov
AU  - D. Y. Lebedev
AU  - V. P. Tsvetkov
AU  - I. V. Tsvetkov
TI  - Analysis of instantaneous cardiac rhythm in a model multi-fractal dynamics based on Holter monitoring
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 16
EP  - 30
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_4_a1/
LA  - ru
ID  - MM_2015_27_4_a1
ER  - 
%0 Journal Article
%A A. P. Ivanov
%A A. N. Kudinov
%A D. Y. Lebedev
%A V. P. Tsvetkov
%A I. V. Tsvetkov
%T Analysis of instantaneous cardiac rhythm in a model multi-fractal dynamics based on Holter monitoring
%J Matematičeskoe modelirovanie
%D 2015
%P 16-30
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_4_a1/
%G ru
%F MM_2015_27_4_a1
A. P. Ivanov; A. N. Kudinov; D. Y. Lebedev; V. P. Tsvetkov; I. V. Tsvetkov. Analysis of instantaneous cardiac rhythm in a model multi-fractal dynamics based on Holter monitoring. Matematičeskoe modelirovanie, Tome 27 (2015) no. 4, pp. 16-30. http://geodesic.mathdoc.fr/item/MM_2015_27_4_a1/

[1] A. N. Kudinov, D. Iy. Lebedev, V. P. Tsvetkov, I. V. Tsvetkov, “Matematicheskaia model multi-fraktalnoi dinamiki i analiz serdechnykh ritmov”, Matematicheskoe modelirovanie, 26:10 (2014), 127–136 | Zbl

[2] A. N. Kudinov, V. P. Tsvetkov, I. V. Tsvetkov, “Catastrophes in the Multi-Fractal Dynamics of Social-Economic Systems”, Russian Journal of Mathematical Physics, 18:2 (2011), 149–155 | DOI | MR | Zbl

[3] L. V. Shpak, Kardiointervalografiia i ee klinicheskoe znachenie, Iz-vo Faktor, Tver, 2002, 232 pp.

[4] R. M. Baevskii, Prognozirovanie sostoianii na grani normy i patologii, Medicina, M., 1979, 205 pp.

[5] G. V. Riabykina, A. V. Sobolev, Monitorirovanie EKG s analizom variabelnosti ritma serdtsa, ID Medpraktika-M, M., 2005, 224 pp.

[6] “Analiz variabelnosti serdechnogo ritma pri ispolzovanii razlichnykh elektrokardiograficheskikh sistem (Metodicheskie rekomendatsii)”, Vestnik aritmologii, 24 (2001), 65–87

[7] O. S. Guliaeva, I. V. Tsvetkov, “Opredelenie fraktalnoi razmernosti na osnove izmereniia dlin grafikov vremennykh riadov v razlichnykh vremennykh mashtabakh”, Vestnik Tverskogo gosudarstvennogo universiteta, seriia «Prikladnaia matematika», 2007, no. 17(45), 155–160

[8] O. I. Krylova, I. V. Tsvetkov, “Kompleks programm i algoritm rashcheta fraktalnoi razmernosti i lineinogo trenda vremennykh riadov”, Programmnye produkty i sistemy, 2012, no. 4, 87–90

[9] I. V. Tsvetkov, “Teoriia katastrof i fraktalnaia model krizisnykh socialno-ekonomicheskikh processov”, Vestnik Tverskogo gosudarstvennogo universiteta. Seriia: Prikladnaia matematika, 2010, no. 12, 55–59

[10] M. Ryan, B. Lown, H. Horn, “Comparison of Ventricular Ectopic Activity during 24-Hour Monitoring and Exercise Testing in Patients with Coronary Heart Disease”, The New England Journal of Medicine, 292 (1975), 224–229 | DOI