Calculation of mutual capacitances for system of conductors in dielectric media using “walk on hemispheres”
Matematičeskoe modelirovanie, Tome 27 (2015) no. 3, pp. 86-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we discuss the problem of mutual capacitance extraction for system of conductors in inhomogeneous isotropic dielectrics using Monte-Carlo method. For that purpose we represent capacitance coefficients as functional for outer Dirichlet problem for Laplace equation. Unbiased and low-biased estimates are constructed using “walk on hemispheres” process. Algorithm can be used for calculating mutual capacities for systems of conductors in inhomogeneous isotropic dielectrics with plain dielectric interfaces. To use it one need to define functions for: generating uniformly distributed point on the “shell”, that separate inner object from others; finding of normal vector in the point on the “shell”, on the conductor and at dielectric interface; calculation of distance from specified point to nearest conductor and nearest dielectric interface; finding dielectric permittivity at the given point. The paper contains results of experiments for parallelepiped conductors separated with parallelepiped “shells”.
Mots-clés : mutual capacitance
Keywords: Monte-Carlo method, dielectric, random walk, “walk on hemispheres”, outer Dirichlet problem.
@article{MM_2015_27_3_a5,
     author = {A. N. Kuznetsov},
     title = {Calculation of mutual capacitances for system of conductors in dielectric media using {\textquotedblleft}walk on hemispheres{\textquotedblright}},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {86--95},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_3_a5/}
}
TY  - JOUR
AU  - A. N. Kuznetsov
TI  - Calculation of mutual capacitances for system of conductors in dielectric media using “walk on hemispheres”
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 86
EP  - 95
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_3_a5/
LA  - ru
ID  - MM_2015_27_3_a5
ER  - 
%0 Journal Article
%A A. N. Kuznetsov
%T Calculation of mutual capacitances for system of conductors in dielectric media using “walk on hemispheres”
%J Matematičeskoe modelirovanie
%D 2015
%P 86-95
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_3_a5/
%G ru
%F MM_2015_27_3_a5
A. N. Kuznetsov. Calculation of mutual capacitances for system of conductors in dielectric media using “walk on hemispheres”. Matematičeskoe modelirovanie, Tome 27 (2015) no. 3, pp. 86-95. http://geodesic.mathdoc.fr/item/MM_2015_27_3_a5/

[1] A. N. Kuznetsov, “Raschet vzaimnykh elektrostaticheskikh emkostei sistemy provodnikov metodom bluzhdaniia po polusferam”, Matem. modelirovanie i kraevye zadachi, Trudy piatoi Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem (29–31 maia 2008 g.), v. 2, SamGTU, Samara, 2008, 58–60

[2] A. N. Kuznetsov, A. S. Sipin, “Universalnyi algoritm rascheta vzaimnykh elektrostaticheskikh emkostei sistemy provodnikov metodom Monte-Karlo”, Matem. modelirovanie, 21:3 (2009), 41–52

[3] S. M. Ermakov, V. V. Nekrutkin, A. S. Sipin, Random Processes for Classical Equations of Mathematical Physics, Kluwer Academic Publishers, 1989

[4] S. M. Ermakov, A. S. Sipin, “The “Walk in Hemispheres” Process and its Applications to Solving Boundary Value Problems”, Vestnik of the St. Petersburg University: Mathematics, 42:3 (2009), 155–163 | DOI

[5] A. N. Tikhonov, A. A. Samarskii, Uravneniia matematicheskoi fiziki, Nauka, M., 1977

[6] Smythe W. R., Static and dynamic electricity, 2$^\mathrm{nd}$ ed., New York, 1950

[7] J. Tausch, J. White, “Capacitance extraction of 3-D conductor systems in dielectric media with high-permittivity ratios”, IEEE Transactions on Microwave Theory and Techniques, 47:1 (1999), 18–26 (accessed: 09.01.2011) http://www.rle.mit.edu/cpg/publications/pub03.pdf | DOI

[8] R. Courant, D. Hilbert, Methods of Mathematical Physics, v. 2, Interscience Publishers, N.Y., 1962

[9] R. Courant, D. Hilbert, Methods of Mathematical Physics, v. 1, Interscience Publishers, N.Y., 1953

[10] K. Nabors, S. Kim, J. White, “Fast capacitance extraction of general three-dimensional structures”, IEEE Transactions on Microwave Theory and Techniques, 40:7 (1992), 1496–1506 (accessed: 09.01.2011) http://www.rle.mit.edu/cpg/publications/pub15.pdf | DOI

[11] Computer codes produced and supported by the Research Laboratory of Electronics at MIT Computational Prototyping Group, (accessed: 03.01.2011) http://www.rle.mit.edu/cpg/research_codes.htm