Even- and odd-parity kinetic equations of particle transport. 3:~Finite analytic scheme on tetrahedra
Matematičeskoe modelirovanie, Tome 27 (2015) no. 2, pp. 34-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive a finite analytic (not the finite difference) scheme for the even-odd parity transport equations of neutral particles. This discrete scheme utilizes the analytic solution in an adjacent tetrahedral cells to formulate the algebraic representation of partial differential equations. The scheme allows to simulate 3D neutrons and photons transport in heterogeneous absorbing, scattering, multiplying media (problems of nuclear reactors, radiation shielding, radiative heat transfer, radiation gas dynamics) without restrictions on the optical depth of the cell (the product of the extinction coefficient and the cell chord), and no restrictions in the values of jump in extinction coefficient in the transition of particles from one cell to another. Is allowed to change sign the extinction coefficient. The scheme is well combined with different iterative methods for solving deterministic transport problems in which the angular (direction-of-flight) variable is discretized using the discrete-ordinates (Sn) approximation.
Mots-clés : neutron and photon transport equation
Keywords: finite analytic method, tetrahedral mesh, numerical simulation, nuclear reactors, radiative heat transfer.
@article{MM_2015_27_2_a2,
     author = {A. V. Shilkov},
     title = {Even- and odd-parity kinetic equations of particle transport. {3:~Finite} analytic scheme on tetrahedra},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {34--62},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_2_a2/}
}
TY  - JOUR
AU  - A. V. Shilkov
TI  - Even- and odd-parity kinetic equations of particle transport. 3:~Finite analytic scheme on tetrahedra
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 34
EP  - 62
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_2_a2/
LA  - ru
ID  - MM_2015_27_2_a2
ER  - 
%0 Journal Article
%A A. V. Shilkov
%T Even- and odd-parity kinetic equations of particle transport. 3:~Finite analytic scheme on tetrahedra
%J Matematičeskoe modelirovanie
%D 2015
%P 34-62
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_2_a2/
%G ru
%F MM_2015_27_2_a2
A. V. Shilkov. Even- and odd-parity kinetic equations of particle transport. 3:~Finite analytic scheme on tetrahedra. Matematičeskoe modelirovanie, Tome 27 (2015) no. 2, pp. 34-62. http://geodesic.mathdoc.fr/item/MM_2015_27_2_a2/

[1] A. V. Shilkov, “Even- and Odd-Parity Kinetic Equations of Particle Transport. 1: Algebraic and Centered Forms of the Scattering Integral”, Mathematical Models and Computer Simulations, 6:5 (2014), 465–479 | DOI

[2] A. V. Shilkov, “Even- and Odd-Parity Kinetic Equations of Particle Transport. 2: A Finite Analytic Characteristic Scheme for One-Dimensional Problems”, Mathematical Models and Computer Simulations, 7:1 (2015), 36–50 | DOI

[3] A. N. Tikhonov, A. A. Samarskii, “Ob odnorodnykh raznostnykh skhemakh vysokogo poriadka tochnosti”, Doklady AN SSSR, 131:3 (1960), 514–517

[4] A. N. Tikhonov, A. A. Samarskiy, “Odnorodnye raznostnye skhemy vysokogo poriadka tochnosti na neravnomermykh setkakh”, Zhurnal vychislitelnoi matematiki i natematicheskoi fiziki, 1:3 (1961), 425–440

[5] A. A. Samarskiy, Vvedenie v teoriu raznostnykh skhem, Nauka, M., 1971, 553 pp.

[6] A. M. Ilyin, “Raznostnaia skhema dlia differentsialnogo uravnenia s malym parametrom pri starshey proizvodnoy”, Matematicheskie zametki, 6:2 (1969), 237–248

[7] K. V. Emelianov, “Raznostnaia skhema dlia trekhmernogo ellipticheskogo uravnenia s malym parametrom pri starshikh proizvodnykh”, Trudy Inst. Matematiki i mekhaniki Uralskogo tsentra AN SSSR, 11, Sverdlovsk, 1973, 30–42

[8] C. J. Chen, H. Naseri-Nashet, K. S. Ho, “Finite analytic numerical solution of heat transfer in two dimensional cavity flow”, Journal of Numerical Heat Transfer, 4 (1981), 179–197

[9] C. J. Chen, H. C. Chen, “Finite analytic numerical method for unsteady two-dimensional Navier–Stokes equations”, Journal of Computational Physics, 53:2 (1984), 209–226 | DOI

[10] C. J. Chen, R. Bernatz, K. D. Carlson, W. Lin, Finite analytic method in flows and heat transfer, Taylor and Francis, N.Y., 2000, 335 pp.

[11] J. P. Pontaza, H. C. Chen, J. N. Reddy, “A local-analytic-based discretization procedure for the numerical solution of incompressible flows”, International Journal for Numerical Methods in Fluids, 49:6 (2005), 657–699 | DOI

[12] G. Strang, G. J. Fix, An analysis of the finite element method, Prentice-Hall, Englewood Cliffs, N.J., 1973

[13] Skvortsov A. V., Trianguliatsia Delone i ee primenenie, Izd. Tomskogo univ., Tomsk, 2002, 128 pp.

[14] B. G. Carlson, Solution of the transport equation by Sn approximations, Report of Los Alamos Scientific Laboratory No LA-1891, 1955, 28 pp.

[15] G. I. Bell, S. Glasstone, Nuclear Reactor Theory, Van Nostrand Reinhold, N.Y., 1970, 637 pp.

[16] S. Chandrasekhar, Radiative transfer, Clarendon Press, Oxford, 1950, 400 pp.

[17] K. D. Lathrop, B. G. Carlson, Discrete ordinates angular quadrature of the neutron transport equation, Report of Los Alamos scientific Laboratory No LA-3186, 1964, 50 pp.

[18] V. I. Lebedev, “O kvadraturakh na sfere”, Zhurnal vychislitelnoi matematiki i natematicheskoi fiziki, 16:2 (1976), 93–306

[19] I. P. Mysovskikh, Interpoliatsionnye kubaturnye formuly, Nauka, M., 1981, 336 pp.

[20] A. S. Popov, “Kubaturnye formuly na sfere, invariantnye otnositelno gruppy vrashenii ikosaedra”, Sibirskii zhurnal vychislitelnoi matematiki, 11:4 (2008), 433–440

[21] A. A. Samarskii, E. S. Nikolaev, Metody reshenia setochnykh uravnenii, Nauka, M., 1978, 592 pp.

[22] J. W. Demmel, Applied numerical linear algebra, SIAM, Philadelphia, 1997, 431 pp.

[23] V. Ya. Goldin, “Kvazidiffuzionnyi metod reshenia kineticheskogo uravnenia”, Zhurnal vychislitelnoi matematiki i natematicheskoi fiziki, 4:6 (1964), 1078–1087

[24] G. I. Marchuk, V. I. Lebedev, Numerical Methods in the Theory of Neutron Transport, Harwood Academic Publishers, London, 1986, 601 pp.

[25] M. L. Adams, E. W. Larsen, “Fast iterative methods for discrete-ordinates particle transport calculations”, Journal Progress in Nuclear Energy, 40:1 (2002), 3–159 | DOI