Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_2_a2, author = {A. V. Shilkov}, title = {Even- and odd-parity kinetic equations of particle transport. {3:~Finite} analytic scheme on tetrahedra}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {34--62}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_2_a2/} }
TY - JOUR AU - A. V. Shilkov TI - Even- and odd-parity kinetic equations of particle transport. 3:~Finite analytic scheme on tetrahedra JO - Matematičeskoe modelirovanie PY - 2015 SP - 34 EP - 62 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2015_27_2_a2/ LA - ru ID - MM_2015_27_2_a2 ER -
A. V. Shilkov. Even- and odd-parity kinetic equations of particle transport. 3:~Finite analytic scheme on tetrahedra. Matematičeskoe modelirovanie, Tome 27 (2015) no. 2, pp. 34-62. http://geodesic.mathdoc.fr/item/MM_2015_27_2_a2/
[1] A. V. Shilkov, “Even- and Odd-Parity Kinetic Equations of Particle Transport. 1: Algebraic and Centered Forms of the Scattering Integral”, Mathematical Models and Computer Simulations, 6:5 (2014), 465–479 | DOI
[2] A. V. Shilkov, “Even- and Odd-Parity Kinetic Equations of Particle Transport. 2: A Finite Analytic Characteristic Scheme for One-Dimensional Problems”, Mathematical Models and Computer Simulations, 7:1 (2015), 36–50 | DOI
[3] A. N. Tikhonov, A. A. Samarskii, “Ob odnorodnykh raznostnykh skhemakh vysokogo poriadka tochnosti”, Doklady AN SSSR, 131:3 (1960), 514–517
[4] A. N. Tikhonov, A. A. Samarskiy, “Odnorodnye raznostnye skhemy vysokogo poriadka tochnosti na neravnomermykh setkakh”, Zhurnal vychislitelnoi matematiki i natematicheskoi fiziki, 1:3 (1961), 425–440
[5] A. A. Samarskiy, Vvedenie v teoriu raznostnykh skhem, Nauka, M., 1971, 553 pp.
[6] A. M. Ilyin, “Raznostnaia skhema dlia differentsialnogo uravnenia s malym parametrom pri starshey proizvodnoy”, Matematicheskie zametki, 6:2 (1969), 237–248
[7] K. V. Emelianov, “Raznostnaia skhema dlia trekhmernogo ellipticheskogo uravnenia s malym parametrom pri starshikh proizvodnykh”, Trudy Inst. Matematiki i mekhaniki Uralskogo tsentra AN SSSR, 11, Sverdlovsk, 1973, 30–42
[8] C. J. Chen, H. Naseri-Nashet, K. S. Ho, “Finite analytic numerical solution of heat transfer in two dimensional cavity flow”, Journal of Numerical Heat Transfer, 4 (1981), 179–197
[9] C. J. Chen, H. C. Chen, “Finite analytic numerical method for unsteady two-dimensional Navier–Stokes equations”, Journal of Computational Physics, 53:2 (1984), 209–226 | DOI
[10] C. J. Chen, R. Bernatz, K. D. Carlson, W. Lin, Finite analytic method in flows and heat transfer, Taylor and Francis, N.Y., 2000, 335 pp.
[11] J. P. Pontaza, H. C. Chen, J. N. Reddy, “A local-analytic-based discretization procedure for the numerical solution of incompressible flows”, International Journal for Numerical Methods in Fluids, 49:6 (2005), 657–699 | DOI
[12] G. Strang, G. J. Fix, An analysis of the finite element method, Prentice-Hall, Englewood Cliffs, N.J., 1973
[13] Skvortsov A. V., Trianguliatsia Delone i ee primenenie, Izd. Tomskogo univ., Tomsk, 2002, 128 pp.
[14] B. G. Carlson, Solution of the transport equation by Sn approximations, Report of Los Alamos Scientific Laboratory No LA-1891, 1955, 28 pp.
[15] G. I. Bell, S. Glasstone, Nuclear Reactor Theory, Van Nostrand Reinhold, N.Y., 1970, 637 pp.
[16] S. Chandrasekhar, Radiative transfer, Clarendon Press, Oxford, 1950, 400 pp.
[17] K. D. Lathrop, B. G. Carlson, Discrete ordinates angular quadrature of the neutron transport equation, Report of Los Alamos scientific Laboratory No LA-3186, 1964, 50 pp.
[18] V. I. Lebedev, “O kvadraturakh na sfere”, Zhurnal vychislitelnoi matematiki i natematicheskoi fiziki, 16:2 (1976), 93–306
[19] I. P. Mysovskikh, Interpoliatsionnye kubaturnye formuly, Nauka, M., 1981, 336 pp.
[20] A. S. Popov, “Kubaturnye formuly na sfere, invariantnye otnositelno gruppy vrashenii ikosaedra”, Sibirskii zhurnal vychislitelnoi matematiki, 11:4 (2008), 433–440
[21] A. A. Samarskii, E. S. Nikolaev, Metody reshenia setochnykh uravnenii, Nauka, M., 1978, 592 pp.
[22] J. W. Demmel, Applied numerical linear algebra, SIAM, Philadelphia, 1997, 431 pp.
[23] V. Ya. Goldin, “Kvazidiffuzionnyi metod reshenia kineticheskogo uravnenia”, Zhurnal vychislitelnoi matematiki i natematicheskoi fiziki, 4:6 (1964), 1078–1087
[24] G. I. Marchuk, V. I. Lebedev, Numerical Methods in the Theory of Neutron Transport, Harwood Academic Publishers, London, 1986, 601 pp.
[25] M. L. Adams, E. W. Larsen, “Fast iterative methods for discrete-ordinates particle transport calculations”, Journal Progress in Nuclear Energy, 40:1 (2002), 3–159 | DOI