Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_1_a0, author = {E. S. Palamarchuk}, title = {Stabilization of linear stochastic systems with a~discount: modeling and estimation of the long-term effects from the application of optimal control strategies}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--15}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_1_a0/} }
TY - JOUR AU - E. S. Palamarchuk TI - Stabilization of linear stochastic systems with a~discount: modeling and estimation of the long-term effects from the application of optimal control strategies JO - Matematičeskoe modelirovanie PY - 2015 SP - 3 EP - 15 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2015_27_1_a0/ LA - ru ID - MM_2015_27_1_a0 ER -
%0 Journal Article %A E. S. Palamarchuk %T Stabilization of linear stochastic systems with a~discount: modeling and estimation of the long-term effects from the application of optimal control strategies %J Matematičeskoe modelirovanie %D 2015 %P 3-15 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2015_27_1_a0/ %G ru %F MM_2015_27_1_a0
E. S. Palamarchuk. Stabilization of linear stochastic systems with a~discount: modeling and estimation of the long-term effects from the application of optimal control strategies. Matematičeskoe modelirovanie, Tome 27 (2015) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/MM_2015_27_1_a0/
[1] C. C. Holt, “Linear Decision Rules for Economic Stabilization and Growth”, The Quarterly Journal of Economics, 76:1 (1962), 20–45 | DOI
[2] S. J. Turnovsky, Macroeconomic Analysis and Stabilization Policy, Cambridge University Press, Cambridge, MA, 1977, 399 pp.
[3] E. S. Palamarchuk, “Otsenka riska v lineinykh ekonomicheskikh sistemakh pri otritsatelnikh vremennykh predpochteniiakh”, Ekonomika i matematicheskie metody, 49:3 (2013), 99–116
[4] J. K. Sengupta, “Optimal Stabilization Policy with a Quadratic Criterion Function”, The Review of Economic Studies, 37:1 (1970), 127–145 | DOI
[5] T. A. Belkina, E. S. Palamarchuk, “On Stochastic Optimality for a Linear Controller with Attenuating Disturbances”, Automation and Remote Control, 2013, no. 4, 628–641 | DOI
[6] R. Neck, “Optimal Stabilizing and Destabilizing 'Stabilization' Policies”, Cybernetics and Systems'86, Proceedings of the Eighth European Meeting on Cybernetics and Systems Research, Springer-Verlag, Berlin, 1986, 926
[7] A. H. Gelb, “Optimal Control and Stabilization Policy: An Application to the Coffee Economy”, The Review of Economic Studies, 44:1 (1977), 95–109 | DOI
[8] T. A. Belkina, Yu. M. Kabanov, E. L. Presman, “On a Stochastic Optimality of the Feedback Control in the LQG-Problem”, Theory of Probability Its Applications, 48:1 (2003), 592–603 | DOI
[9] H. Kwakernaak, R. Sivan, Linear optimal control systems, Wiley-interscience, NY, 1972, 608 pp.
[10] E. S. Palamarchuk, “Asymptotic Behavior of the Solution to a Linear Stochastic Differential Equation and Almost Sure Optimality for a Controlled Stochastic Process”, Computational Mathematics and Mathematical Physics, 54:1 (2014), 83–96 | DOI
[11] M. H. A. Davis, Linear Estimation and Stochastic Control, Chapman and Hall, London, 1977, 224 pp.
[12] V. Dragan, T. Morozan, A.-M. Stoica, Mathematical Methods in Robust Control of Linear Stochastic Systems, Springer, New York, 2006, 308 pp.
[13] L. Ya. Adrianova, Introduction to linear systems of differential equations, American Mathematical Society, Providence, 1995, 204 pp.