Stabilization of linear stochastic systems with a~discount: modeling and estimation of the long-term effects from the application of optimal control strategies
Matematičeskoe modelirovanie, Tome 27 (2015) no. 1, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a problem of stabilization of linear stochastic control systems. The quadratic cost functional measures the total loss resulting from deviation of the process and control from their target levels. It includes the decision maker’s time preference expressed by means of discount function. We study the long-run impacts of average optimal policies in terms of mean-square deviation of optimal trajectory from its target and also in an almost-sure sense.
Keywords: stabilization of linear systems, quadratic cost, time preference, discount function, infinite-time horizon.
@article{MM_2015_27_1_a0,
     author = {E. S. Palamarchuk},
     title = {Stabilization of linear stochastic systems with a~discount: modeling and estimation of the long-term effects from the application of optimal control strategies},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_1_a0/}
}
TY  - JOUR
AU  - E. S. Palamarchuk
TI  - Stabilization of linear stochastic systems with a~discount: modeling and estimation of the long-term effects from the application of optimal control strategies
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 3
EP  - 15
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_1_a0/
LA  - ru
ID  - MM_2015_27_1_a0
ER  - 
%0 Journal Article
%A E. S. Palamarchuk
%T Stabilization of linear stochastic systems with a~discount: modeling and estimation of the long-term effects from the application of optimal control strategies
%J Matematičeskoe modelirovanie
%D 2015
%P 3-15
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_1_a0/
%G ru
%F MM_2015_27_1_a0
E. S. Palamarchuk. Stabilization of linear stochastic systems with a~discount: modeling and estimation of the long-term effects from the application of optimal control strategies. Matematičeskoe modelirovanie, Tome 27 (2015) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/MM_2015_27_1_a0/

[1] C. C. Holt, “Linear Decision Rules for Economic Stabilization and Growth”, The Quarterly Journal of Economics, 76:1 (1962), 20–45 | DOI

[2] S. J. Turnovsky, Macroeconomic Analysis and Stabilization Policy, Cambridge University Press, Cambridge, MA, 1977, 399 pp.

[3] E. S. Palamarchuk, “Otsenka riska v lineinykh ekonomicheskikh sistemakh pri otritsatelnikh vremennykh predpochteniiakh”, Ekonomika i matematicheskie metody, 49:3 (2013), 99–116

[4] J. K. Sengupta, “Optimal Stabilization Policy with a Quadratic Criterion Function”, The Review of Economic Studies, 37:1 (1970), 127–145 | DOI

[5] T. A. Belkina, E. S. Palamarchuk, “On Stochastic Optimality for a Linear Controller with Attenuating Disturbances”, Automation and Remote Control, 2013, no. 4, 628–641 | DOI

[6] R. Neck, “Optimal Stabilizing and Destabilizing 'Stabilization' Policies”, Cybernetics and Systems'86, Proceedings of the Eighth European Meeting on Cybernetics and Systems Research, Springer-Verlag, Berlin, 1986, 926

[7] A. H. Gelb, “Optimal Control and Stabilization Policy: An Application to the Coffee Economy”, The Review of Economic Studies, 44:1 (1977), 95–109 | DOI

[8] T. A. Belkina, Yu. M. Kabanov, E. L. Presman, “On a Stochastic Optimality of the Feedback Control in the LQG-Problem”, Theory of Probability Its Applications, 48:1 (2003), 592–603 | DOI

[9] H. Kwakernaak, R. Sivan, Linear optimal control systems, Wiley-interscience, NY, 1972, 608 pp.

[10] E. S. Palamarchuk, “Asymptotic Behavior of the Solution to a Linear Stochastic Differential Equation and Almost Sure Optimality for a Controlled Stochastic Process”, Computational Mathematics and Mathematical Physics, 54:1 (2014), 83–96 | DOI

[11] M. H. A. Davis, Linear Estimation and Stochastic Control, Chapman and Hall, London, 1977, 224 pp.

[12] V. Dragan, T. Morozan, A.-M. Stoica, Mathematical Methods in Robust Control of Linear Stochastic Systems, Springer, New York, 2006, 308 pp.

[13] L. Ya. Adrianova, Introduction to linear systems of differential equations, American Mathematical Society, Providence, 1995, 204 pp.