Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_12_a7, author = {A. V. Favorskaya and I. B. Petrov and V. I. Golubev and N. I. Khokhlov}, title = {Numerical simulation of earthquakes' impact on facilities by grid-characteristic method}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {109--120}, publisher = {mathdoc}, volume = {27}, number = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_12_a7/} }
TY - JOUR AU - A. V. Favorskaya AU - I. B. Petrov AU - V. I. Golubev AU - N. I. Khokhlov TI - Numerical simulation of earthquakes' impact on facilities by grid-characteristic method JO - Matematičeskoe modelirovanie PY - 2015 SP - 109 EP - 120 VL - 27 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2015_27_12_a7/ LA - ru ID - MM_2015_27_12_a7 ER -
%0 Journal Article %A A. V. Favorskaya %A I. B. Petrov %A V. I. Golubev %A N. I. Khokhlov %T Numerical simulation of earthquakes' impact on facilities by grid-characteristic method %J Matematičeskoe modelirovanie %D 2015 %P 109-120 %V 27 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2015_27_12_a7/ %G ru %F MM_2015_27_12_a7
A. V. Favorskaya; I. B. Petrov; V. I. Golubev; N. I. Khokhlov. Numerical simulation of earthquakes' impact on facilities by grid-characteristic method. Matematičeskoe modelirovanie, Tome 27 (2015) no. 12, pp. 109-120. http://geodesic.mathdoc.fr/item/MM_2015_27_12_a7/
[1] R. Madariaga, “Dynamics of an expanding circular fault”, Bull. Seism. Soc. Am., 65 (1976), 163–182
[2] J. Virieux, “SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method”, Geophysics, 49 (1984), 1933–1942 | DOI
[3] A. R. Levander, “Fourth-order finite difference P-SV seismograms”, Geophysics, 53 (1988), 1425–1436 | DOI
[4] P. Mora, “Modeling anisotropic seismic waves in 3-D”, 59th Ann. Int. Mtg. Exploration Geophysicist, Expanded Articles, 1989, 1039–1043
[5] P. Moczo, J. Kristek, V. Vavrycuk, R. J. Archuleta, L. Halada, “3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities”, Bull. Seism. Soc. Am., 92 (2002), 3042–3066 | DOI
[6] E. Tessmer, “3-D Seismic modeling of general material anisotropy in the presence of the free surface by Chebyshev spectral method”, Geophysical Journal International, 59 (1995), 464–473
[7] M. Kaser, H. Igel, “A comparative study of explicit differential operators on arbitrary grids”, J. Comput. Acoustics, 9 (2011), 1111–1125 | DOI | MR
[8] J. M. Carcione, “The wave equation in generalised coordinates”, Geophysics, 59 (1994), 1911–1919 | DOI
[9] E. Tessmer, D. Kosloff, “3-D Elastic modeling with surface topography by a Chebyshev spectral method”, Geophysics, 59 (1994), 464–473 | DOI
[10] H. Igel, “Wave propagation in three-dimensional spherical sections by Chebyshev spectral method”, Geophys. J. Int., 136 (1999), 559–566 | DOI
[11] E. Priolo, J. M. Carcione, G. Seriani, “Numerical simulation of interface waves by high-order spectral modeling techniques”, J. Acoust. Soc. Am., 95 (1994), 681–693 | DOI
[12] D. Komatitsch, J. P. Vilotte, “The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures”, Bull. Seism. Soc. Am., 88 (1998), 368–392
[13] G. Seriani, “3-D large-scale wave propagation modeling by a spectral-element method on a Cray T3E multiprocessor”, Comput. Methods Appl. Mech. Eng., 164 (1998), 235–247 | DOI | Zbl
[14] I. E. Kvasov, I. B. Petrov, F. B. Chelnokov, “Raschet volnovykh processov v neodnorodnykh prostranstvennyhk konstrukcijakh”, Matematicheskoe modelirovanie, 21:5 (2009), 3–9
[15] I. B. Petrov, A. V. Favorskaya, A. V. Sannikov, I. E. Kvasov, “Grid-characteristic method using highorder interpolation on tetrahedral hierarchical meshes with a multiple time step”, Mathematical Models and Computer Simulations, 5:5 (2013), 409–415 | DOI
[16] V. I. Golubev, I. E. Kvasov, I. B. Petrov, “Influence of natural disasters on ground facilities”, Mathematical Models and Computer Simulations, 4:2 (2012), 129–134 | DOI | MR | Zbl
[17] V. I. Golubev, I. B. Petrov, N. I. Khokhlov, “Numerical simulation of seismic activity by the grid-characteristic method”, Computational Mathematics and Mathematical Physics, 53:10 (2013), 1523–1533 | DOI | DOI | MR | Zbl
[18] V. Novatskij, Teoriia uprugosti, Mir, M., 1975, 872 pp. | MR
[19] V. Novatskij, Volnovye zadachi teorii plastichnosti, Mir, M., 1978, 307 pp.
[20] A. Harten, “High resolution schemes for hyperbolic conservation laws”, Journal of Computational Physics, 135:2 (1997), 260–278 | DOI | MR | Zbl
[21] I. B. Petrov, N. I. Khokhlov, “Sravnenie TVD limiterov dlia chislennogo resheniia uravnenij dinamiki deformiruemogo tverdogo tela setochno-harakteristicheskim metodom”, Matematicheskie modeli i zadachi upravleniia, Sbornik nauchnyh trudov, 2011, 104–111
[22] P. L. Roe, “Characteristic-Based Schemes for the Euler Equations”, Annual Review of Fluid Mechanics, 18 (1986), 337–365 | DOI | MR | Zbl
[23] R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, United Kingdom, 2004, 558 pp. | MR