Definite integral method of characteristics for advection equations
Matematičeskoe modelirovanie, Tome 27 (2015) no. 11, pp. 110-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical method for solution of advection equations is proposed. The method is based on determination of definite integral of desired function over space interval which upper and lower bounds are formed by characteristics of the advection equations. There has been implemented a comparative analysis of the method with the interpolation method of characteristics which is the major competitive one to the proposed method.
Mots-clés : advection equation
Keywords: time-continuous Markov process, Fokker–Plank–Kolmogorov equation, Rosenbrock scheme, stiff differential systems.
@article{MM_2015_27_11_a8,
     author = {Y. A. Lygin},
     title = {Definite integral method of characteristics for advection equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {110--119},
     publisher = {mathdoc},
     volume = {27},
     number = {11},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_11_a8/}
}
TY  - JOUR
AU  - Y. A. Lygin
TI  - Definite integral method of characteristics for advection equations
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 110
EP  - 119
VL  - 27
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_11_a8/
LA  - ru
ID  - MM_2015_27_11_a8
ER  - 
%0 Journal Article
%A Y. A. Lygin
%T Definite integral method of characteristics for advection equations
%J Matematičeskoe modelirovanie
%D 2015
%P 110-119
%V 27
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_11_a8/
%G ru
%F MM_2015_27_11_a8
Y. A. Lygin. Definite integral method of characteristics for advection equations. Matematičeskoe modelirovanie, Tome 27 (2015) no. 11, pp. 110-119. http://geodesic.mathdoc.fr/item/MM_2015_27_11_a8/

[1] Iu. A. Lygin, “Reshenie differentsialnogo uravneniia obshchego vida so sluchainym markovskim koeffitsientom s nepreryvnym vremenem”, Izvestiia vysshikh uchebnykh zavedenii. Matematika, 2014, no. 12, 60–69 | MR | Zbl

[2] V. I. Tikhonov, N. K. Kulman, Nelineinaia filtratsiia i kvazikogerentnyi priem signalov, Sov. radio, M., 1975

[3] M. I. Bakirova, V. Ia. Karpov, M. Mukhina, “Kharakteristiko-interpoliatsionnyi metod resheniia uravneniia perenosa”, Differentsialnye uravneniia, 22:7 (1986), 1141–1148 | MR | Zbl

[4] Iu. A. Lygin, “Model dinamiki osnovnykh fondov s uchetom nedostatochnoi kompetentsii obsluzhivaiushchego personala”, Informatsionnye tekhnologii v ekonomicheskikh issledovaniiakh, Materialy nauchno-prakticheskoi konferentsii, DGTU, Rostov n/D, 2013, 105–111

[5] Iu. A. Lygin, “Matematicheskaia model shuma, voznikaiushchego pri prokhozhdenii tiagovogo toka cherez kontakt koleso–rels”, Transport-2013, Materialy vserossiiskoi nauchno-prakticheskoi konferentsii (Rostov-na-Donu, 24–26 aprelia 2013), Izd-vo Rost. gos. un-ta putei soobshcheniia, Rostov n/D, 48–50