Numerical simulation of transonic turbulent flow around the wedge-shaped body with backward-facing step
Matematičeskoe modelirovanie, Tome 27 (2015) no. 10, pp. 81-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers complex near-wall fully-3D transonic (Mach number $\mathrm{M}=0.913$) turbulent flow around the wedge-shaped body with backward step, Reynolds number $\mathrm{Re}=7.2\cdot 10^6$. The technology of numerical simulation of such-type problems is represented in detail. A series of preliminary auxiliary predictions is carried out in order to choose the optimal computational algorithm. The numerical results of final prediction for the complete geometry based on hybrid IDDES approach of RANS-LES family are given. The validity of the results is confirmed by the comparison with the available experimental data.
Keywords: numerical simulation of turbulent flows, near-wall flows, wedge-shaped body, backward step, hybrid RANS-LES approaches, IDDES, unstructured meshes.
@article{MM_2015_27_10_a6,
     author = {B. N. Dankov and A. P. Duben and T. K. Kozubskaya},
     title = {Numerical simulation of transonic turbulent flow around the wedge-shaped body with backward-facing step},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {81--95},
     publisher = {mathdoc},
     volume = {27},
     number = {10},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_10_a6/}
}
TY  - JOUR
AU  - B. N. Dankov
AU  - A. P. Duben
AU  - T. K. Kozubskaya
TI  - Numerical simulation of transonic turbulent flow around the wedge-shaped body with backward-facing step
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 81
EP  - 95
VL  - 27
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_10_a6/
LA  - ru
ID  - MM_2015_27_10_a6
ER  - 
%0 Journal Article
%A B. N. Dankov
%A A. P. Duben
%A T. K. Kozubskaya
%T Numerical simulation of transonic turbulent flow around the wedge-shaped body with backward-facing step
%J Matematičeskoe modelirovanie
%D 2015
%P 81-95
%V 27
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_10_a6/
%G ru
%F MM_2015_27_10_a6
B. N. Dankov; A. P. Duben; T. K. Kozubskaya. Numerical simulation of transonic turbulent flow around the wedge-shaped body with backward-facing step. Matematičeskoe modelirovanie, Tome 27 (2015) no. 10, pp. 81-95. http://geodesic.mathdoc.fr/item/MM_2015_27_10_a6/

[1] M. L. Shur, P. R. Spalart, M. Kh. Strelets, A. K. Travin, “A hybrid RANS-LES approach with delayed-DES and wall-modeled LES capabilities”, International Journal of Heat and Fluid Flow, 29:6 (2008), 1638–1649 | DOI

[2] P. R. Spalart, W. H. Jou, M. Kh. Strelets, S. R. Allmaras, “Comments op the feasibility of LES for wings, and on a hybrid RANS/LES approach”, Proc. of the First AFOSR Int. Conf. on DNS/LES (Ruston, USA, 1997), 137–148

[3] P. R. Spalart, S. Deck, M. L. Shur, K. Squires, M. Kh. Strelets, A. K. Travin, “A new version of detached-eddy simulation, resistant to ambiguous grid densities”, Theoretical and Computational Fluid Dynamics, 20 (2006), 181–195 | DOI | Zbl

[4] W. Haase, M. Braza, A. Revell (eds.), DESider — A European Effort on Hybrid RANS-LES Modelling, Springer, 2009

[5] P. R. Spalart, S. R. Allmaras, “A One-Equation Turbulence Model for Aerodynamic Flows”, 30$^{\mathrm{th}}$ Aerospace Science Meeting (Reno, Nevada, 1992), AIAA Paper 92-0439

[6] P. R. Spalart, Young-Person's Guide to Detached-Eddy Simulation Grids, NASA/CR-2001-211032, 2001

[7] I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben, T. K. Kozubskaya, “Parallel research code NOISEtte for large-scale CFD and CAA simulations”, Vychislitelnye Metody i Programmirovanie, 13 (2012), 110–125 | MR

[8] I. V. Abalakin, P. A. Bakhvalov, T. K. Kozubskaya, “Edge-based reconstruction schemes for prediction of near field flow region in complex aeroacoustic problems”, International Journal of Aeroacoustics, 13:3–4 (2014), 207–234

[9] I. V. Abalakin, P. A. Bakhvalov, T. K. Kozubskaya, “Edge-Based Methods in CAA”, Accurate and Efficient Aeroacoustic Prediction Approaches for Airframe Noise, Lecture Series, 2013-03, eds. C. Schram, R. Denos, E. Lecomte, von Karman Institute for Fluid Dynamics, 2013

[10] C. A. J. Fletcher, Computational Galerkin methods, Springer, 1984, 309 pp. | MR | Zbl

[11] L. Roe, “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes”, J. Comput. Phys., 43 (1981), 357–372 | DOI | MR | Zbl

[12] A. P. Duben, “Computational technologies for simulation of complex near-wall turbulent flows using unstructured meshes”, Mathematical Models and Computer Simulations, 6:2 (2014), 162–171 | Zbl

[13] Y. Saad, Iterative methods for sparse linear systems, 3rd ed., WEB edition, 2000

[14] M. L. Shur, P. R. Spalart, M. Kh. Strelets, A. K. Travin, “Physical and numerical upgrades in the Detached-Eddy Simulation of complex turbulent flows”, Fluid Mechanics and its Applications, Advances in LES of Complex Flows, eds. R. Friederich, W. Rodi, Kluwer Academic Publishers, 2004

[15] P. R. Spalart, “Detached-Eddy Simulation”, Annual Review Fluid Mechanics, 41 (2009), 181–202 | DOI | Zbl

[16] N. Chauvet, S. Deck, L. Jacquin, “Zonal detached eddy simulation of a controlled propulsive jet”, AIAA Journal, 45:10 (2007), 2458–2473 | DOI