Numerical investigation of flow reconstruction features on a hammerhead cylinder-conic model
Matematičeskoe modelirovanie, Tome 27 (2015) no. 10, pp. 65-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of numerical investigation of transonic flow reconstruction occurring with the increase of free stream Mach number on a hammerhead cylinder-conic model with a small conegenerating half-angle are presented. The turbulent flow is considered. The Reynolds equations with different turbulent models (basically Spalart–Allmaras model) are solved. The computational results are compared to the experimental data and the results of solving the Euler equations.
Keywords: numerical simulation, transonic flow, detached flow, breakdown shock wave, flow reconstruction.
@article{MM_2015_27_10_a5,
     author = {I. Yu. Kudryashov and A. E. Lutsky and B. N. Dankov and E. O. Kolyada and Yu. M. Lipnickiy},
     title = {Numerical investigation of flow reconstruction features on a hammerhead cylinder-conic model},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--80},
     publisher = {mathdoc},
     volume = {27},
     number = {10},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_10_a5/}
}
TY  - JOUR
AU  - I. Yu. Kudryashov
AU  - A. E. Lutsky
AU  - B. N. Dankov
AU  - E. O. Kolyada
AU  - Yu. M. Lipnickiy
TI  - Numerical investigation of flow reconstruction features on a hammerhead cylinder-conic model
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 65
EP  - 80
VL  - 27
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_10_a5/
LA  - ru
ID  - MM_2015_27_10_a5
ER  - 
%0 Journal Article
%A I. Yu. Kudryashov
%A A. E. Lutsky
%A B. N. Dankov
%A E. O. Kolyada
%A Yu. M. Lipnickiy
%T Numerical investigation of flow reconstruction features on a hammerhead cylinder-conic model
%J Matematičeskoe modelirovanie
%D 2015
%P 65-80
%V 27
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_10_a5/
%G ru
%F MM_2015_27_10_a5
I. Yu. Kudryashov; A. E. Lutsky; B. N. Dankov; E. O. Kolyada; Yu. M. Lipnickiy. Numerical investigation of flow reconstruction features on a hammerhead cylinder-conic model. Matematičeskoe modelirovanie, Tome 27 (2015) no. 10, pp. 65-80. http://geodesic.mathdoc.fr/item/MM_2015_27_10_a5/

[1] J. E. Robertson, H. L. Chevalier, Characteristics of Steady-State Pressures on the Cylindrical Portion of Cone-Cylinder Bodies at Transonic Speeds, AEDC TDR-63-204, Arnold Engineering Development Center, 1963

[2] H. L. Chevalier, J. E. Robertson, Pressure Fluctuations Resulting from Alternating Flow Separation and Attachment at Transonic Speeds, AEDC TDR-63-204, Arnold Engineering Development Center, 1963

[3] A. Stanbrook, “Experimental Pressure Distribution on a Plane-Nosed Cylinder at Subsonic and Transonic Speeds”, Aeronaut. Res. Council. Repts. and Mem., 1963, no. 3425, 18

[4] A. I. Kurianov, G. I. Stoliarov, Ia. P. Korobov, V. I. Shteier, “O gisterezisnykh iavleniiakh pri obtekanii tsilindrov malogo udlineniia s razlichnoi formoi zatupleniia na okolozvukovykh skorostiakh”, Trudy TsAGI, 1442, 1972, 1–31

[5] N. S. Bachmanova, B. S. Kirnasov, V. V. Kudriavtsev, Iu. M. Lipnitskii, “Bezotryvnoe simmetrichnoe obtekanie transzvukovym potokom tsilindrokonicheskikh tel”, Izv. AN SSSR, MZhG, 1975, no. 6, 164–167

[6] A. I. Kurianov, G. I. Stoliarov, “O needinstvennosti struktury obtekaniia tsilindra malogo udlineniia s segmentalnym zatupleniem na okolozvukovykh skorostiakh”, Trudy TsAGI, 1979, 1–32

[7] V. R. Bertyn, V. V. Nazarenko, T. P. Nevezhina, “Eksperimentalnoe issledovanie nekotorykh osobennostei otryvnogo transzvukovogo obtekaniia modelei”, Uchenye zapiski TsAGI, XII:2 (1981), 103–106 | MR

[8] A. I. Guzhavin, Ia. P. Korobov, “O gisterezise sverkhzvukovykh otryvnykh techenii”, Izv. AN SSSR, MZhG, 1984, no. 2, 116–125

[9] N. F. Krasnov, V. N. Koshevoi, V. T. Kalugin, Aerodinamika otryvnykh techenii, Vysshaia shkola, M., 1988, 350 pp.

[10] A. I. Gujavin, B. S. Kirnasov, J. P. Korobov, V. V. Kudryavtsev, “The Critical Phenomena in Separated Flows”, Separated Flows and Jets, IUTAM-Symposium (1990), 381–384

[11] A. N. Liubimov, N. M. Tiumnev, G. I. Khut, Metody issledovaniia techenii gaza i opredeleniia aerodinamicheskikh kharakteristik osesimmetrichnykh tel, Nauka, M., 1995, 397 pp.

[12] L. E. Ericsson, D. Pavish, “Aeroelastic Vehicle Dynamics of a Proposed Delta II 7920–10L Launch Vehicle”, Journal of Spacecraft and Rockets, 37:1 (2000), 28–38 | DOI

[13] A. A. Diadkin, “Osobennosti aerodinamiki nadkalibernykh golovnykh chastei raket-nositelei”, Kosmonavtika raketostroenie, 1999, no. 17, 131–135

[14] A. S. Butkov, B. N. Dankov, V. N. Kulikov, “Osobennosti raspredeleniia davleniia v fiksirovannykh i svobonykh zonakh otryva za nadkalibernymi golovnymi chastiami”, Kosmonavtika. Radioelektronika. Geoinformatika, 3-ia Mezhdunarodnaia nauchno-tekhnicheskaia konferentsiia, Tezisy dokladov, 2000, 109–112

[15] B. N. Dankov, A. P. Kosenko, V. N. Kulikov, V. N. Otmennikov, “Osobennosti transzvukovokgo obtekaniia konusotsilindricheskogo tela pri bolshom ugle izloma obrazuiushchei na perednei uglovoi kromke”, Izv. RAN, MZhG, 2006, no. 2, 46–60 | MR

[16] B. N. Dankov, A. P. Kosenko, V. N. Kulikov, V. N. Otmennikov, “Osobennosti transzvukovokgo obtekaniia konusotsilindricheskogo tela pri malom ugle izloma obrazuiushchei na perednei uglovoi kromke”, Izv. RAN, MZhG, 2006, no. 3, 140–154

[17] B. N. Dankov, A. P. Kosenko, V. N. Kulikov, V. N. Otmennikov, “Volnovye vozmushcheniia v transzvukovykh otryvnykh techeniiakh”, Izv. RAN, MZhG, 2006, no. 6, 153–165 | MR

[18] B. N. Dankov, A. P. Kosenko, V. N. Kulikov, V. N. Otmennikov, “Osobennosti transzvukovokgo techeniia za zadnei uglovoi kromkoi nadkalibernogo konusotsilindricheskogo tela”, Izv. RAN, MZhG, 2007, no. 3, 155–168 | MR

[19] A. S. Butkov, B. N. Dankov, A. P. Kosenko, Iu. M. Lipnitskii, N. V. Mishkova, “Statsionarnye i nestatsionarnye lokalnye aerodinamicheskie nagruzki, deistvuiushchie na sborochno-zashchitnye bloki”, Kosmonavtika i raketostroenie, 2007, no. 1, 53–62

[20] B. N. Dankov, V. V. Eryomin, A. P. Kosenko, Yu. M. Lipnitskiy, “Role of wave disturbances in transonic separated flows”, TsAGI Science Journal, 41:2 (2010), 147–155 | DOI

[21] R. G. Abdrashitov, E. Yu. Arhireeva, B. N. Dankov, I. S. Menshov, A. V. Severin, I. V. Semenov, T. V. Trebunskih, I. B. Chuchkalov, “Mechanisms of non-stationary processes in a lengthy cavern”, TsAGI Science Journal, 43:4 (2012), 445–480 | DOI

[22] E. Iu. Arkhireeva, B. N. Dankov, E. O. Koliada, A. P. Kosenko, “Osobennosti avtokolebatelnykh protsessov, voznikaiushchikh pri transzvukovoi perestroike techeniia za trekhmernym ustupom poverkhnosti tela”, Kosmonavtika i raketostroenie, 2014, no. 4, 17–25 | MR

[23] A. A. Kharkevich, Avtokolebaniia, GITTL, M., 1954

[24] V. V. Eremin, V. A. Mikhalin, A. V. Rodionov, “Construction of difference grids and calculation of hypersonic flows”, Proceeding of the Sino–Russian Hypersonic Flow Conference (1996), 6–11

[25] V. V. Eremin, V. A. Mikhalin, A. V. Rodionov, “Raschet aerodinamicheskoi interferentsii elementov raket-nositelei pri sverkhzvukovykh skorostiakh”, AMGD, 2002, no. 1, 24–35

[26] E. D. V. Bigarella, J. L. F. Azevedo, O. A. F. Mello, “Normal Force Calculations for Rocketlike Configurations”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, XXVI:3 (2004), 290–296

[27] E. D. V. Bigarella, J. L. F. Azevedo, “Numerical Study of Turbulent Flows over Launch Vehicle Configurations”, Journal of Spacecraft and Rockets, 42:2 (2005) | DOI

[28] E. D. V. Bigarella, J. L. F. Azevedo, L. C. Scalabrin, “Centered and Upwind Multigrid Turbulent Flows Simulations of Launch Vehicle Configurations”, Journal of Spacecraft and Rockets, 44:1 (2007)

[29] I. Yu. Kudryashov, A. E. Lutsky, “Mathematical simulation of turbulent separated transonic flows about the bodies of revolution”, Math. Models Comput. Simul., 3:6 (2011), 690–696 | DOI | MR | Zbl

[30] I. Yu. Kudryashov, A. E. Lutsky, “Adaptatsiia koda dlia rascheta techenii viazkikh zhidkostei pod gibridnye vychislitelnye sistemy na baze tekhnologii CUDA-MPI”, Matematicheskoe modelirovanie, 24:7 (2012), 33–44

[31] P. R. Spalart, S. R. Allmaras, A one equation turbulence model for aerodynamic flows, AIAA Paper No 92-0439, 1992

[32] F. R. Menter, “Two-equation eddy viscosity turbulence models for engineering applications”, AIAA Journal, 32:8 (1994), 1598–1605 | DOI

[33] H. Lienhart, S. Becker, Flow and Turbulence Structures in the Wake of a Simplified Car Model, SAE Technical paper, 01-0656, 2003

[34] P. Catalano, M. Marini, A. Nicoli, “CFD Contribution to the Aerodynamic Data Set of Vega Launcher”, Journal of Spacecraft and Rockets, 44:1 (2007) | DOI

[35] K. N. Volkov, V. N. Emelianov, Modelirovanie krupnykh vikhrei v raschetakh turbulentnykh techenii, Fizmatlit, 2008

[36] A. V. Garbaruk, M. Kh. Strelets, M. L. Shur, Modelirovanie turbulentnosti v raschetakh slozhnykh techenii, Izd. Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta, 2012

[37] P. R. Spalart, W. H. Jou, M. Strelets, S. R. Allmaras, “Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach”, Proceedings of the First AFOSR International Conference on DNS/LES (1997), 137–148

[38] M. L. Shur, P. R. Spalart, M. Kh. Strelets, A. K. Travin, “A hybrid RANS- LES approach with delayedDES and wall-modeled LES capabilities”, International Journal of Heat and Fluid Flow, 29 (2008), 1638–1649 | DOI

[39] K. P. Petrov, Aerodinamika tel prosteishikh form, Faktorial, M., 1998, 432 pp.