Accurate dependence for determining the pressure distribution on a sphere at an arbitrary Mach number of a supersonic incoming flow
Matematičeskoe modelirovanie, Tome 26 (2014) no. 9, pp. 141-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

Setting of initial data is required for solution of stationary problems of supersonic flow over blunt bodies by time-dependent setting method. The closer the initial data are to the sought solution, the quicker such solution can be obtained. A rule of local spheres is applied in many cases when initial pressure on a blunt body of an arbitrary shape is taken the same as on a sphere with an equal incidence angle of respective elements of these surfaces to the incoming flow. A simple analytical dependence has been obtained which gives practically accurate pressure distribution jn a sphere for the whole range of Mach numbers of incoming flow.
Keywords: supersonic gas flow, three-dimensional gas flows, sonic point.
@article{MM_2014_26_9_a9,
     author = {V. P. Kotenev},
     title = {Accurate dependence for determining the pressure distribution on a sphere at an arbitrary {Mach} number of a supersonic incoming flow},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {141--148},
     publisher = {mathdoc},
     volume = {26},
     number = {9},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_9_a9/}
}
TY  - JOUR
AU  - V. P. Kotenev
TI  - Accurate dependence for determining the pressure distribution on a sphere at an arbitrary Mach number of a supersonic incoming flow
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 141
EP  - 148
VL  - 26
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_9_a9/
LA  - ru
ID  - MM_2014_26_9_a9
ER  - 
%0 Journal Article
%A V. P. Kotenev
%T Accurate dependence for determining the pressure distribution on a sphere at an arbitrary Mach number of a supersonic incoming flow
%J Matematičeskoe modelirovanie
%D 2014
%P 141-148
%V 26
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_9_a9/
%G ru
%F MM_2014_26_9_a9
V. P. Kotenev. Accurate dependence for determining the pressure distribution on a sphere at an arbitrary Mach number of a supersonic incoming flow. Matematičeskoe modelirovanie, Tome 26 (2014) no. 9, pp. 141-148. http://geodesic.mathdoc.fr/item/MM_2014_26_9_a9/

[1] Shevelev Yu. D., Prostranstvennye zadachi vychislitelnoi aerogidrodinamiki, Nauka, M., 1986, 367 pp. | Zbl

[2] Lunev V. V., Techenie realnykh gazov s bolshimi skorostyami, Fizmatlit, M., 2007, 327 pp.

[3] Minailos A. N., “Parametry podobiya i approksimatsionnye zavisimosti osesimmetrichnogo sverkhzvukovogo techeniya u ellipsoidov”, Mekhanika zhidkosti i gaza, 1973, no. 3, 176–180

[4] Pokrovskii A. N., Frolov L. G., “Priblizhennye zavisimosti dlya opredeleniya davleniya na poverkhnosti sfery ili tsilindra pri proizvolnom chisle Makha nabegayuschego potoka”, Mekhanika zhidkosti i gaza, 1985, no. 2, 185–190 | MR

[5] DeJarnette F., Ford C., Young D., “Calculation of Pressures on Bodies at Low Angles of Attack in Supersonic Flow”, Journal of Spacecraft and Rockets, 17:6 (1980), 529–536 | DOI

[6] Pulliam T., Steger J., “Implicit Finite-Difference Simulations of Three-Dimensional Compressible Flow”, AIAA Journal, 18:2 (1980), 159–167 | DOI | MR | Zbl

[7] Lyubimov A. N., Rusanov V. V., Techeniya gaza okolo tupykh tel, v. 2, Nauka, M., 1970, 379 pp.

[8] Burdelnyi A. K., Minostsev V. B., Mosin A. F., Savinov K. G., Falunin M. P., “Issledovanie sverkhzvukovogo obtekaniya trekhosnogo ellipsoida”, Nauchnye trudy, 30, Institut mekhaniki MGU im. M. V. Lomonosova, M., 1973, 157–167