Multigrid for anisotropic diffusion problems based on adaptive Chebyshev's smoothers
Matematičeskoe modelirovanie, Tome 26 (2014) no. 9, pp. 126-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose an efficient multigrid algorithm for solving anisotropic elliptic difference equations. The algorithm is based on the explicit Chebyshev iterations for solution of the coarsest grid equations and for construction of smoothing procedures. We develop the adaptive smoothers for anisotropic problems, and show that it provides efficiency of the multigrid algorithm and scalability in parallel implementation.
Keywords: three-dimensional anisotropic diffusion, multigrid algorithm, Chebyshev's iterations, adaptive smoother
Mots-clés : parallel implementation.
@article{MM_2014_26_9_a8,
     author = {V. T. Zhukov and N. D. Novikova and O. B. Feodoritova},
     title = {Multigrid for anisotropic diffusion problems based on adaptive {Chebyshev's} smoothers},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {126--140},
     publisher = {mathdoc},
     volume = {26},
     number = {9},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_9_a8/}
}
TY  - JOUR
AU  - V. T. Zhukov
AU  - N. D. Novikova
AU  - O. B. Feodoritova
TI  - Multigrid for anisotropic diffusion problems based on adaptive Chebyshev's smoothers
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 126
EP  - 140
VL  - 26
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_9_a8/
LA  - ru
ID  - MM_2014_26_9_a8
ER  - 
%0 Journal Article
%A V. T. Zhukov
%A N. D. Novikova
%A O. B. Feodoritova
%T Multigrid for anisotropic diffusion problems based on adaptive Chebyshev's smoothers
%J Matematičeskoe modelirovanie
%D 2014
%P 126-140
%V 26
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_9_a8/
%G ru
%F MM_2014_26_9_a8
V. T. Zhukov; N. D. Novikova; O. B. Feodoritova. Multigrid for anisotropic diffusion problems based on adaptive Chebyshev's smoothers. Matematičeskoe modelirovanie, Tome 26 (2014) no. 9, pp. 126-140. http://geodesic.mathdoc.fr/item/MM_2014_26_9_a8/

[1] Zhukov V. T., Novikova N. D., Feodoritova O. B., “Parallelnyi mnogosetochnyi metod dlya raznostnykh ellipticheskikh uravnenii. Chast I. Osnovnye elementy algoritma”, Preprinty IPM im. M. V. Keldysha, 2012, 030, 32 pp. http://library.keldysh.ru/preprint.asp?id=2012-30 | Zbl

[2] Zhukov V. T., Novikova N. D., Feodoritova O. B., “Parallelnyi mnogosetochnyi metod dlya raznostnykh ellipticheskikh uravnenii. Anizotropnaya diffuziya”, Preprinty IPM im. M. V. Keldysha, 2012, 076, 36 pp. http://library.keldysh.ru/preprint.asp?id=2012-76

[3] Zhukov V. T., Novikova N. D., Feodoritova O. B., “Parallelnyi mnogosetochnyi metod dlya resheniya ellipticheskikh uravnenii”, Matem. modelirovanie, 26:1 (2014), 55–68

[4] Fedorenko R. P., “Relaksatsionnyi metod resheniya raznostnykh ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 1:5 (1961), 922–927 | MR | Zbl

[5] Zhukov V. T., “O yavnykh metodakh chislennogo integrirovaniya dlya parabolicheskikh uravnenii”, Matem. modelirovanie, 22:10 (2010), 127–158 | MR | Zbl

[6] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 592 pp.

[7] Trottenberg U., Oosterlee C. W., Schuller A., Multigrid, Academic Press, 2001 | MR | Zbl

[8] Baker Allison H., Falgout Robert D., Kolev Tzanio V., Yang Ulrike Meier, “Multigrid Smoothers for Ultraparallel Computing”, SIAM J. Sci. Comput., 33:5 (2011), 2864–2887 | DOI | MR | Zbl