Stochastic modeling of nanoelectronic systems
Matematičeskoe modelirovanie, Tome 26 (2014) no. 8, pp. 97-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the modeling of nanoelectronic systems using quantum mechanics. A brief review of the most common approaches is given. The stochastic modeling scheme of nanoscale systems which allows parallel computing is proposed. Numerical simulation results of two simple systems are given. The correspondence with known analytical solutions is shown.
Keywords: stochastic methods, nanoelectronics, quantum mechanics.
@article{MM_2014_26_8_a6,
     author = {V. A. Vasil'ev and P. S. Chernov},
     title = {Stochastic modeling of nanoelectronic systems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--106},
     publisher = {mathdoc},
     volume = {26},
     number = {8},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_8_a6/}
}
TY  - JOUR
AU  - V. A. Vasil'ev
AU  - P. S. Chernov
TI  - Stochastic modeling of nanoelectronic systems
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 97
EP  - 106
VL  - 26
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_8_a6/
LA  - ru
ID  - MM_2014_26_8_a6
ER  - 
%0 Journal Article
%A V. A. Vasil'ev
%A P. S. Chernov
%T Stochastic modeling of nanoelectronic systems
%J Matematičeskoe modelirovanie
%D 2014
%P 97-106
%V 26
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_8_a6/
%G ru
%F MM_2014_26_8_a6
V. A. Vasil'ev; P. S. Chernov. Stochastic modeling of nanoelectronic systems. Matematičeskoe modelirovanie, Tome 26 (2014) no. 8, pp. 97-106. http://geodesic.mathdoc.fr/item/MM_2014_26_8_a6/

[1] Soldatov E. S., Khanin V. V., Trifonov A. S., Gubin S. P., Kolesov V. V., Presnov D. E., Yakovenko S. A., Khomutov G. B., Korotkov A. N., “Molekulyarnyi odnoelektronnyi tranzistor, rabotayuschii pri komnatnoi temperature”, UFN, 168:2 (1998), 217–219 | DOI

[2] Zahid Ali Khan Durrani, Single-Electron Devices and Circuits in Silicon, Imperial College Press, 2009, 300 pp.

[3] Feynman R. P., Hibbs A. R., Quantum Mechanics and Path Integrals, Dover Publications, 2010, 384 pp. | MR | Zbl

[4] Naumov M., Sameh A., “A parallel eigenvalue problem solver for computational nanoelectronics”, PAMM Proc. Appl. Math. Mech., 7 (2007), 2020097–2020098 | DOI

[5] Feinman R., Khibs A., Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968, 382 pp.

[6] Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H., Teller E., “Equations of State Calculations by Fast Computing Machines”, Journal of Chemical Physics, 21:6 (1953), 1087–1092 | DOI

[7] Gubernatis J. E., Loh E. Y., “Sign problem in the numerical simulation of many-electron systems”, Phys. Rev. B, 41 (1990), 9301–9307 | DOI

[8] Masujima M., Path Integral Quantization and Stochastic Quantization, 2nd ed., Springer, 2009, 294 pp. | MR | Zbl