A technique implemented in the VOLNA code package to simulate the flow of natural gas in pipelines
Matematičeskoe modelirovanie, Tome 26 (2014) no. 7, pp. 87-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents an explicit Lagrangian-Eulerian technique for simulating transient flows of natural gas in pipelines. The technique is implemented in the VOLNA code package which is used to simulate gas transport systems. Test calculations of stationary problems show the technique to attain second-order spatial convergence for smooth flows and provide acceptable accuracy in practical calculations.
Mots-clés : gas transport simulation, Lagrangian–Eulerian technique.
Keywords: code package, natural gas, pipeline
@article{MM_2014_26_7_a6,
     author = {Max G. Anuchin and Mikh G. Anuchin and A. A. Vorob'ev and A. A. Kalinin and G. V. Kaspiev and A. N. Kuznetsov and V. N. Yushmanov and A. Ya. Yakovlev},
     title = {A technique implemented in the {VOLNA} code package to simulate the flow of natural gas in pipelines},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {87--96},
     publisher = {mathdoc},
     volume = {26},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_7_a6/}
}
TY  - JOUR
AU  - Max G. Anuchin
AU  - Mikh G. Anuchin
AU  - A. A. Vorob'ev
AU  - A. A. Kalinin
AU  - G. V. Kaspiev
AU  - A. N. Kuznetsov
AU  - V. N. Yushmanov
AU  - A. Ya. Yakovlev
TI  - A technique implemented in the VOLNA code package to simulate the flow of natural gas in pipelines
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 87
EP  - 96
VL  - 26
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_7_a6/
LA  - ru
ID  - MM_2014_26_7_a6
ER  - 
%0 Journal Article
%A Max G. Anuchin
%A Mikh G. Anuchin
%A A. A. Vorob'ev
%A A. A. Kalinin
%A G. V. Kaspiev
%A A. N. Kuznetsov
%A V. N. Yushmanov
%A A. Ya. Yakovlev
%T A technique implemented in the VOLNA code package to simulate the flow of natural gas in pipelines
%J Matematičeskoe modelirovanie
%D 2014
%P 87-96
%V 26
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_7_a6/
%G ru
%F MM_2014_26_7_a6
Max G. Anuchin; Mikh G. Anuchin; A. A. Vorob'ev; A. A. Kalinin; G. V. Kaspiev; A. N. Kuznetsov; V. N. Yushmanov; A. Ya. Yakovlev. A technique implemented in the VOLNA code package to simulate the flow of natural gas in pipelines. Matematičeskoe modelirovanie, Tome 26 (2014) no. 7, pp. 87-96. http://geodesic.mathdoc.fr/item/MM_2014_26_7_a6/

[1] Anuchin M. G., Gagarin S. V., Ignatev A. O., Kalinin A. A., Kuznetsov A. N., Suchkov V. A., Shnitko S. A., “Nestatsionarnaya model magistralnogo transporta prirodnogo gaza”, Razvitie kompyuternykh kompleksov modelirovaniya i optimizatsii rezhimov raboty sistem gazosnabzheniya i ikh rol v dispetcherskom upravlenii tekhnologicheskimi protsessami v gazovoi otrasli, Materialy 1-i Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii, v. 2, OOO «IRTs Gazprom», Moskva, 2004, 33–39

[2] Averyanov V. K., Novitskii M. G., Sukharev M. G. i dr. (red.), Truboprovodnye sistemy energetiki. Razvitie teorii i metodov matematicheskogo modelirovaniya i optimizatsii, Nauka, Novosibirsk, 2008, 312 pp.

[3] Anuchin M. G., Anuchin M. G., Gagarin S. V., Kalinin A. A., Kuznetsov A. N., “Model magistralnogo gazoprovoda, metodiki i algoritmy rascheta”, Zababakhinskie nauchnye chteniya, sbornik materialov X Mezhdunarodnoi konferentsii (15–19 marta 2010), Izdatelstvo RFYaTs-VNIITF, Snezhinsk, 2010, 376

[4] Anuchin M. G., Vronskii A. V., Gagarin S. V., Vishnyakov V. N., Zhelanov V. P., Volkov S. Yu., “Programmnyi kompleks «AGAT-OnLine»: raschet v realnom vremeni rabochikh rezhimov tsentrobezhnykh nagnetatelei”, Gazovaya promyshlennost, 2006, no. 1, 25–27

[5] Charnyi I. A., Neustanovivsheesya dvizhenie realnoi zhidkosti v trubakh, Nedra, M., 1975, 296 pp.

[6] Valderrama Jose O., “The State of the Cubic Equations of State”, Ind. Eng. Chem. Res., 42 (2003), 1603–1618 | DOI

[7] Altshul A. D., Kiselev P. G., Gidravlika i aerodinamika, Izd. Literatury po stroitelstvu, M., 1965

[8] Kovenya V. M., Yanenko N. N., Metod rasschepleniya v zadachakh gazovoi dinamiki, Nauka, Novosibirsk, 1981, 304 pp. | MR | Zbl

[9] Troschiev V. E., “O divergentnosti skhemy «krest» chislennogo resheniya uravnenii gazovoi dinamiki”, Chisl. metody mekhan. sploshnoi sredy, 1:5 (1970), 87–93 | MR

[10] Bondarenko Yu. A., “Konservativnoe rasscheplenie uravneniya energii v raznostnykh skhemakh tipa «krest» dlya lagranzhevoi gazodinamiki”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 37:8 (1997), 1020–1023 | MR

[11] Sweby P. K., “High-resolution schemes using flux limiters for hyperbolic conservation laws”, SIAM Journal of Numerical Analysis, 21 (1984), 995–1011 | DOI | MR | Zbl

[12] Noh W. F., “Errors for Calculations of Strong Shocks Using an Artifical Viscosity and an Artifical Heat Flux”, Journal of Computational Physics, 72 (1987), 78–120 | DOI | Zbl

[13] Kalitkin H. H., Chislennye metody, Nauka, M., 1978 | MR

[14] Bartsch P., Borzi A., “On the modeling and simulation of boundary flow through partially open pipe ends”, Z. angew. Math. Phys., 55 (2004), 946–961 | DOI | MR | Zbl