The one-step truncated gradient methods
Matematičeskoe modelirovanie, Tome 26 (2014) no. 6, pp. 85-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: quicuest descent, minimal residualds, minimal residuals, step truncation
Mots-clés : conjugate gradients.
@article{MM_2014_26_6_a5,
     author = {N. N. Kalitkin and L. V. Kuzmina},
     title = {The one-step truncated gradient methods},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {85--99},
     publisher = {mathdoc},
     volume = {26},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_6_a5/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - L. V. Kuzmina
TI  - The one-step truncated gradient methods
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 85
EP  - 99
VL  - 26
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_6_a5/
LA  - ru
ID  - MM_2014_26_6_a5
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A L. V. Kuzmina
%T The one-step truncated gradient methods
%J Matematičeskoe modelirovanie
%D 2014
%P 85-99
%V 26
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_6_a5/
%G ru
%F MM_2014_26_6_a5
N. N. Kalitkin; L. V. Kuzmina. The one-step truncated gradient methods. Matematičeskoe modelirovanie, Tome 26 (2014) no. 6, pp. 85-99. http://geodesic.mathdoc.fr/item/MM_2014_26_6_a5/

[1] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1960 | MR

[2] Lantsosh K., Prakticheskie metody prikladnogo analiza, Fizmatgiz, M., 1961

[3] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka. Fizmatlit, M., 1978 | MR

[4] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, 3-e izdanie, Binom, M., 2004

[5] Kalitkin N. N., Kuzmina L. V., “Uluchshennaya forma metoda sopryazhennykh gradientov”, Matematicheskoe modelirovanie, 23:7 (2011), 33–51 | MR | Zbl

[6] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989 | MR

[7] Craig E., “The N-step iteration procedures”, J. Math. and Phys., 34:1 (1955), 64–73 | MR | Zbl

[8] Abramov A. A., Ulyanova V. I., Yukhno L. F., “O realizatsii odnogo metoda isklyucheniya v lineinykh zadachakh s netochno zadannymi iskhodnymi dannymi”, ZhVMiMF, 44:4 (2004), 640–649 | MR | Zbl

[9] Kalitkin N. N., Kuzmina L. V., “O skhodimosti metoda Kreiga dlya lineinykh algebraicheskikh sistem”, Matematicheskoe modelirovanie, 24:3 (2012), 113–136 | MR

[10] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Izdatelstvo Nauka, glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1968 | MR

[11] Alshina E. A., Boltnev A. A., Kacher O. A., “Gradientnye metody s uskorennoi skhodimostyu”, ZhVMiMF, 45:3 (2005), 374–382 | MR | Zbl

[12] Alshina E. A., Boltnev A. A., Kacher O. A., “Empiricheskoe uluchshenie prosteishikh gradientnykh metodov”, Matematicheskoe modelirovanie, 17:6 (2005), 43–57 | MR | Zbl

[13] Ermakov V. V., Kalitkin N. N., “Dvustupenchatyi gradientnyi spusk”, ZhVMiMF, 20:4 (1980), 1040–1045 | MR | Zbl

[14] Chegis R. Yu., “O skorosti skhodimosti kombinirovannykh iteratsionnykh metodov variatsionnogo tipa”, Matematicheskoe modelirovanie, 9:4 (1997), 115–125 | MR