Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2014_26_6_a5, author = {N. N. Kalitkin and L. V. Kuzmina}, title = {The one-step truncated gradient methods}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {85--99}, publisher = {mathdoc}, volume = {26}, number = {6}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2014_26_6_a5/} }
N. N. Kalitkin; L. V. Kuzmina. The one-step truncated gradient methods. Matematičeskoe modelirovanie, Tome 26 (2014) no. 6, pp. 85-99. http://geodesic.mathdoc.fr/item/MM_2014_26_6_a5/
[1] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1960 | MR
[2] Lantsosh K., Prakticheskie metody prikladnogo analiza, Fizmatgiz, M., 1961
[3] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka. Fizmatlit, M., 1978 | MR
[4] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, 3-e izdanie, Binom, M., 2004
[5] Kalitkin N. N., Kuzmina L. V., “Uluchshennaya forma metoda sopryazhennykh gradientov”, Matematicheskoe modelirovanie, 23:7 (2011), 33–51 | MR | Zbl
[6] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989 | MR
[7] Craig E., “The N-step iteration procedures”, J. Math. and Phys., 34:1 (1955), 64–73 | MR | Zbl
[8] Abramov A. A., Ulyanova V. I., Yukhno L. F., “O realizatsii odnogo metoda isklyucheniya v lineinykh zadachakh s netochno zadannymi iskhodnymi dannymi”, ZhVMiMF, 44:4 (2004), 640–649 | MR | Zbl
[9] Kalitkin N. N., Kuzmina L. V., “O skhodimosti metoda Kreiga dlya lineinykh algebraicheskikh sistem”, Matematicheskoe modelirovanie, 24:3 (2012), 113–136 | MR
[10] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Izdatelstvo Nauka, glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1968 | MR
[11] Alshina E. A., Boltnev A. A., Kacher O. A., “Gradientnye metody s uskorennoi skhodimostyu”, ZhVMiMF, 45:3 (2005), 374–382 | MR | Zbl
[12] Alshina E. A., Boltnev A. A., Kacher O. A., “Empiricheskoe uluchshenie prosteishikh gradientnykh metodov”, Matematicheskoe modelirovanie, 17:6 (2005), 43–57 | MR | Zbl
[13] Ermakov V. V., Kalitkin N. N., “Dvustupenchatyi gradientnyi spusk”, ZhVMiMF, 20:4 (1980), 1040–1045 | MR | Zbl
[14] Chegis R. Yu., “O skorosti skhodimosti kombinirovannykh iteratsionnykh metodov variatsionnogo tipa”, Matematicheskoe modelirovanie, 9:4 (1997), 115–125 | MR