Mathematical simulation of stationary filtration problem with multivalued law in multilayer beds
Matematičeskoe modelirovanie, Tome 26 (2014) no. 5, pp. 126-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a stationary filtration problem for incompressible fluid following multivalued filtration law in multilayer beds. Generalized statement of this problem is formulated in the form of mixed variational inequality with monotone operator and separable generally nondifferentiable functional in Hilbert space. We establish the properties of operator (inverse strong monotonicity, coerciveness) and functional (Lipschitz continuity, convexity) contained in this variational inequality. This makes it possible to apply the known results in the theory of monotone operators to prove the existence theorem. To solve the variational inequality, we suggest iterative method that does not require the inversion of the original operator. Each step of the iterative process can essentially be reduced to the solution of the boundary-value problem for the Laplace operator. A convergence of iterative consequence is investigated. This method was realized numerically. The numerical experiments made for the model problems confirmed the efficiency of the iterative method.
Keywords: mathematical simulation, stationary filtration, variational inequality, nondifferentiable functional, inverse strongly monotone operator, iterative method, numerical experiment.
@article{MM_2014_26_5_a8,
     author = {I. B. Badriev and B. Ya. Fanyuk},
     title = {Mathematical simulation of stationary filtration problem with multivalued law in multilayer beds},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {126--136},
     publisher = {mathdoc},
     volume = {26},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_5_a8/}
}
TY  - JOUR
AU  - I. B. Badriev
AU  - B. Ya. Fanyuk
TI  - Mathematical simulation of stationary filtration problem with multivalued law in multilayer beds
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 126
EP  - 136
VL  - 26
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_5_a8/
LA  - ru
ID  - MM_2014_26_5_a8
ER  - 
%0 Journal Article
%A I. B. Badriev
%A B. Ya. Fanyuk
%T Mathematical simulation of stationary filtration problem with multivalued law in multilayer beds
%J Matematičeskoe modelirovanie
%D 2014
%P 126-136
%V 26
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_5_a8/
%G ru
%F MM_2014_26_5_a8
I. B. Badriev; B. Ya. Fanyuk. Mathematical simulation of stationary filtration problem with multivalued law in multilayer beds. Matematičeskoe modelirovanie, Tome 26 (2014) no. 5, pp. 126-136. http://geodesic.mathdoc.fr/item/MM_2014_26_5_a8/

[1] Entov V. M., Pankov V. N., Panko S. V., Matematicheskaya teoriya tselikov ostatochnoi vyazkoplastichnoi nefti, Izdatelstvo Tomskogo universiteta, Tomsk, 1989, 196 pp.

[2] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989, 400 pp. | MR

[3] Badriev I. B., Zadvornov O. A., “Metody dekompozitsii dlya resheniya variatsionnykh neravenstv vtorogo roda s obratno silno monotonnymi operatorami”, Differentsialnye uravneniya, 39:7 (2003), 888–895 | MR | Zbl

[4] Badriev I. B., Zadvornov O. A., “Issledovanie statsionarnoi zadachi filtratsii s mnogoznachnym zakonom pri nalichii tochechnogo istochnika”, Differentsialnye uravneniya, 41:7 (2005), 874–880 | MR | Zbl

[5] Badriev I. B., Zadvornov O. A., Saddek A. M., “Issledovanie skhodimosti iteratsionnykh metodov resheniya nekotorykh variatsionnykh neravenstv s psevdomonotonnymi operatorami”, Differentsialnye uravneniya, 37:7 (2001), 891–898 | MR | Zbl

[6] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR

[7] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp. | MR | Zbl

[8] Karchevskii M. M., Badriev I. B., “Nelineinye zadachi teorii filtratsii s razryvnymi monotonnymi operatorami”, Chislennye metody mekhaniki sploshnoi sredy, 10:5 (1979), 63–78 | MR

[9] Lyashko A. D., Karchevskii M. M., “O reshenii nekotorykh nelineinykh zadach teorii filtratsii”, Izvestiya VUZov. Matematika, 1975, no. 6, 73–81 | Zbl

[10] Badriev I. B., Zadvornov O. A., Ismagilov L. N., “Primenenie metoda dekompozitsii dlya chislennogo resheniya nekotorykh nelineinykh statsionarnykh zadach teorii filtratsii”, Issledovaniya po prikladnoi matematike i informatike, 24, Kazanskii gosudarstvennyi universitet, Kazan, 2003, 12–24