Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2014_26_5_a3, author = {A. V. Kolesnichenko}, title = {To construction entropic transport model based on the formalism of nonextensive statistics}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {48--64}, publisher = {mathdoc}, volume = {26}, number = {5}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2014_26_5_a3/} }
TY - JOUR AU - A. V. Kolesnichenko TI - To construction entropic transport model based on the formalism of nonextensive statistics JO - Matematičeskoe modelirovanie PY - 2014 SP - 48 EP - 64 VL - 26 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2014_26_5_a3/ LA - ru ID - MM_2014_26_5_a3 ER -
A. V. Kolesnichenko. To construction entropic transport model based on the formalism of nonextensive statistics. Matematičeskoe modelirovanie, Tome 26 (2014) no. 5, pp. 48-64. http://geodesic.mathdoc.fr/item/MM_2014_26_5_a3/
[1] Wilson A. J., “Entropy maximizing models in the theory of trip distributions, mode split and route split”, J. Transp. Econ. Policy, 3 (1969), 108–126 | MR
[2] Wilson A. J., “A statistical theory of spatial distribution models”, Transp. Res., 1 (1967), 253–269 | DOI
[3] Vilson A. Dzh., Entropiinye metody modelirovaniya slozhnykh sistem, Nauka, M., 1978, 247 pp. | MR
[4] Gasnikov A. V. i dr., Vvedenie v matematicheskoe modelirovanie transportnykh potokov, Uchebnoe posobie, ed. A. V. Gasnikov, MTsNMO, M., 2012, 376 pp.
[5] Fang S. C., Rajasekera J. R., Tsao H.-S. J., Entropy optimization and mathematical programming, Kluwer Academic Publisher, 1997 | MR | Zbl
[6] Olemskoi A. I., Sinergetika slozhnykh sistem: Fenomenologiya i statisticheskaya teoriya, Krasand, M., 2009, 384 pp.
[7] Reed W. J., “On Pareto's law and the determinants of Pareto exponents”, J. Income Distribution, 13 (2004), 7–17
[8] Tsallis C., “Possible generalization of Boltzmann–Gibbs statistics”, J. Stat. Phys., 52 (1988), 479–487 | DOI | MR | Zbl
[9] Curado E. M. F., Tsallis C., “Generalized statistical mechanics: connection with thermodynamics”, J. Phys. A, 24 (1991), L69–L72 | DOI | MR
[10] http://tsallis.cat.cbpf.br/biblio.htm
[11] Schwammle V., Tsallis C., Two-parameter generalization of the logarithm and exponential functions and Boltzmann–Gibbs–Shannon entropy, arXiv: cond-mat/0703792/ | MR
[12] Tsallis C., Mendes R. S., Plastino A. R., “The role of constraints within generalized Nonextensive statistics”, Physica A, 261 (1998), 534–554 | DOI | MR
[13] Khaken G., Informatsiya i samoorganizatsiya. Makroskopicheskii podkhod k slozhnym sistemam, Mir, M., 1991, 240 pp. | MR
[14] Sheleikhovskii G. V., Kompozitsiya gorodskogo plana kak problema transporta, Giprogor, M., 1946, 129 pp.
[15] Bregman L. D., “Dokazatelstvo skhodimosti metoda Sheleikhovskogo dlya zadachi s transportnymi ogranicheniyami”, ZhViMF, 1967, no. 1, 147–156 | MR
[16] Nesterov Y., de Palma A., “Static equilibrium in congested transportation networks”, Networks and Spatial Economics, 3 (2003), 371–395 | DOI
[17] Leontovich M. A., Vvedenie v termodinamiku. Statisticheskaya fizika, Nauka, M., 1983, 416 pp.
[18] Martinez S., Nicolas F., Pennini F., Plastino A., “Tsallis' entropy maximization procedure revisited”, Physica A, 286 (2000), 489–502 | DOI | MR | Zbl
[19] Beck C., Dynamical foundations of nonextensive statistical mechanics, 2001, arXiv: cond-mat/0105374 | MR