To construction entropic transport model based on the formalism of nonextensive statistics
Matematičeskoe modelirovanie, Tome 26 (2014) no. 5, pp. 48-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper offers a new approach to transport entropy models of allocation based on the formalism of nonextensive statistics. As an example, we constructed a entropy simple model for the single-purpose trips and for a homogeneous group of cars. The developed approach allows to model more complex communications systems (including urban and regional systems for vehicles), which are not described by the Gibbs distribution. The basis of this research is nonextensive Tsallis entropy, and distribution, which are dependent on the actual number $q$, which is a measure of non-additive complex socio-economic systems.
Keywords: entropy Tsallis, nonadditive statistics, entropy modeling of complex systems, entropy transport models.
@article{MM_2014_26_5_a3,
     author = {A. V. Kolesnichenko},
     title = {To construction entropic transport model based on the formalism of nonextensive statistics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {48--64},
     publisher = {mathdoc},
     volume = {26},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_5_a3/}
}
TY  - JOUR
AU  - A. V. Kolesnichenko
TI  - To construction entropic transport model based on the formalism of nonextensive statistics
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 48
EP  - 64
VL  - 26
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_5_a3/
LA  - ru
ID  - MM_2014_26_5_a3
ER  - 
%0 Journal Article
%A A. V. Kolesnichenko
%T To construction entropic transport model based on the formalism of nonextensive statistics
%J Matematičeskoe modelirovanie
%D 2014
%P 48-64
%V 26
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_5_a3/
%G ru
%F MM_2014_26_5_a3
A. V. Kolesnichenko. To construction entropic transport model based on the formalism of nonextensive statistics. Matematičeskoe modelirovanie, Tome 26 (2014) no. 5, pp. 48-64. http://geodesic.mathdoc.fr/item/MM_2014_26_5_a3/

[1] Wilson A. J., “Entropy maximizing models in the theory of trip distributions, mode split and route split”, J. Transp. Econ. Policy, 3 (1969), 108–126 | MR

[2] Wilson A. J., “A statistical theory of spatial distribution models”, Transp. Res., 1 (1967), 253–269 | DOI

[3] Vilson A. Dzh., Entropiinye metody modelirovaniya slozhnykh sistem, Nauka, M., 1978, 247 pp. | MR

[4] Gasnikov A. V. i dr., Vvedenie v matematicheskoe modelirovanie transportnykh potokov, Uchebnoe posobie, ed. A. V. Gasnikov, MTsNMO, M., 2012, 376 pp.

[5] Fang S. C., Rajasekera J. R., Tsao H.-S. J., Entropy optimization and mathematical programming, Kluwer Academic Publisher, 1997 | MR | Zbl

[6] Olemskoi A. I., Sinergetika slozhnykh sistem: Fenomenologiya i statisticheskaya teoriya, Krasand, M., 2009, 384 pp.

[7] Reed W. J., “On Pareto's law and the determinants of Pareto exponents”, J. Income Distribution, 13 (2004), 7–17

[8] Tsallis C., “Possible generalization of Boltzmann–Gibbs statistics”, J. Stat. Phys., 52 (1988), 479–487 | DOI | MR | Zbl

[9] Curado E. M. F., Tsallis C., “Generalized statistical mechanics: connection with thermodynamics”, J. Phys. A, 24 (1991), L69–L72 | DOI | MR

[10] http://tsallis.cat.cbpf.br/biblio.htm

[11] Schwammle V., Tsallis C., Two-parameter generalization of the logarithm and exponential functions and Boltzmann–Gibbs–Shannon entropy, arXiv: cond-mat/0703792/ | MR

[12] Tsallis C., Mendes R. S., Plastino A. R., “The role of constraints within generalized Nonextensive statistics”, Physica A, 261 (1998), 534–554 | DOI | MR

[13] Khaken G., Informatsiya i samoorganizatsiya. Makroskopicheskii podkhod k slozhnym sistemam, Mir, M., 1991, 240 pp. | MR

[14] Sheleikhovskii G. V., Kompozitsiya gorodskogo plana kak problema transporta, Giprogor, M., 1946, 129 pp.

[15] Bregman L. D., “Dokazatelstvo skhodimosti metoda Sheleikhovskogo dlya zadachi s transportnymi ogranicheniyami”, ZhViMF, 1967, no. 1, 147–156 | MR

[16] Nesterov Y., de Palma A., “Static equilibrium in congested transportation networks”, Networks and Spatial Economics, 3 (2003), 371–395 | DOI

[17] Leontovich M. A., Vvedenie v termodinamiku. Statisticheskaya fizika, Nauka, M., 1983, 416 pp.

[18] Martinez S., Nicolas F., Pennini F., Plastino A., “Tsallis' entropy maximization procedure revisited”, Physica A, 286 (2000), 489–502 | DOI | MR | Zbl

[19] Beck C., Dynamical foundations of nonextensive statistical mechanics, 2001, arXiv: cond-mat/0105374 | MR