Plane electromagnetic wave diffraction
Matematičeskoe modelirovanie, Tome 26 (2014) no. 5, pp. 33-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

Cauchy problem definition is considered for Maxwell equations which describe plane electromagnetic wave diffraction on object. The effective current density is constructed for given plane wave radiation. The unicity of Cauchy problem solution is shown. Boundary conditions for initial-boundary problem are formulated; the unicity of problem solution is shown. The implicit finite-difference scheme is chosen, finite-difference boundary conditions are constructed. The algorithm for solving of implicit mesh Maxwell equations is vectorized. Calculation module is developed in Cuda and OpenMP technologies with optimization of access to graphic processor memory.
Keywords: electromagnetic field, Maxwell equations, Cauchy problem, initial-boundary problem, boundary condition, finite-difference scheme, mesh equation, vectorized calculation, central processor, graphic processor, random access memory, coalescent request.
@article{MM_2014_26_5_a2,
     author = {A. V. Berezin and A. S. Vorontsov and M. B. Markov and D. N. Sadovnichiy},
     title = {Plane electromagnetic wave diffraction},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--47},
     publisher = {mathdoc},
     volume = {26},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_5_a2/}
}
TY  - JOUR
AU  - A. V. Berezin
AU  - A. S. Vorontsov
AU  - M. B. Markov
AU  - D. N. Sadovnichiy
TI  - Plane electromagnetic wave diffraction
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 33
EP  - 47
VL  - 26
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_5_a2/
LA  - ru
ID  - MM_2014_26_5_a2
ER  - 
%0 Journal Article
%A A. V. Berezin
%A A. S. Vorontsov
%A M. B. Markov
%A D. N. Sadovnichiy
%T Plane electromagnetic wave diffraction
%J Matematičeskoe modelirovanie
%D 2014
%P 33-47
%V 26
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_5_a2/
%G ru
%F MM_2014_26_5_a2
A. V. Berezin; A. S. Vorontsov; M. B. Markov; D. N. Sadovnichiy. Plane electromagnetic wave diffraction. Matematičeskoe modelirovanie, Tome 26 (2014) no. 5, pp. 33-47. http://geodesic.mathdoc.fr/item/MM_2014_26_5_a2/

[1] Myrova L. O., Chepizhenko A. Z., Obespechenie stoikosti apparatury svyazi k ioniziruyuschim i elektromagnitnym izlucheniyam, Radio i svyaz, M., 1988, 296 pp.

[2] E. F. Vance, Coupling to shielded cables, A Wiley Interscience publication, New York–London–Sydney–Toronto, 1978

[3] Turovskii Ya., Tekhnicheskaya elektrodinamika, Energiya, M., 1974, 466 pp.

[4] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[5] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977

[6] Berezin A. V., Markov M. B., Plyuschenkov B. D., “Lokalno-odnomernaya raznostnaya skhema dlya elektrodinamicheskikh zadach s zadannym volnovym frontom”, Preprinty IPM, 2005, 031

[7] Berezin A. V., Vorontsov A. V., Markov M. B., Plyuschenkov B. D., “O vyvode i reshenii uravnenii Maksvella v zadachakh s zadannym volnovym frontom polei”, Matematicheskoe modelirovanie, 18:4 (2006), 43–60 | MR | Zbl

[8] Berezin A. V., Kryukov A. A., Plyuschenkov B. D., “Metod vychisleniya elektromagnitnogo polya s zadannym volnovym frontom”, Matematicheskoe modelirovanie, 23:3 (2011), 109–126 | MR | Zbl

[9] Andrianov A. N., Berezin A. V., Vorontsov A. S., Efimkin K. N., Zinchenko V. F., Markov M. B., Chlenov A. M., “Modelirovanie puchka uskoritelya LIU-10 na parallelnom kompyutere”, Matematicheskoe modelirovanie, 22:2 (2010), 29–44 | Zbl

[10] http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pd

[11] Sanders J., Kandrot E., CUDA by example. An introduction to General-Purpose GPU Programming, Addison–Wesley Professional, 2010

[12] B. P. Zhukov (red.), Energeticheskie kondensirovannye sistemy. Kratkii entsiklopedicheskii slovar, Yanus-K, M., 1999, 596 pp.

[13] Vorontsov A. S., Markov M. B., Milekhin Yu. M., Sadovnichii D. N., “Matematicheskoe modelirovanie rasprostraneniya elektromagnitnogo impulsa v tverdotoplivnoi energeticheskoi ustanovke”, Preprinty IPM, 2010, 80

[14] Sadovnichii D. N., Markov M. B., Vorontsov A. S., Milekhin Yu. M., “Osobennosti rasprostraneniya elektromagnitnogo impulsa v tverdotoplivnoi energeticheskoi ustanovke”, Fizika goreniya i vzryva, 48:1 (2012), 110–116

[15] Vaganov R. B., Katsenelenbaum B. Z., Osnovy teorii difraktsii, Nauka, M., 1982, 272 pp. | MR | Zbl

[16] Mazalov V. N., Peresvetov V. V., Smagin S. I., Modelirovanie elektromagnitnykh polei v sloistykh sredakh s vklyucheniyami, Dalnauka, Vladivostok, 2000, 292 pp.

[17] Lerer A. M., “Difraktsii elektromagnitnykh impulsov na dielektricheskom tsilindre”, Radiotekhnika i elektronika, 46:9 (2001), 1059–1063

[18] Kotlyar V. V., Lichmanov M. A., “Difraktsiya ploskoi elektromagnitnoi volny na gradientnom opticheskom elemente s poperechnoi tsilindricheskoi simmetriei”, Fizika volnovykh protsessov i radiotekhnicheskie sistemy, 5:4 (2002), 37–43

[19] Sadovnichii D. N., Markov M. B., Vorontsov A. S., Milekhin Yu. M., “Difraktsiya elektromagnitnogo impulsa na dielektricheskom gradientnom tsilindre konechnoi dliny”, Zhurnal tekhnicheskoi fiziki, 2:9 (2012), 55–62 | MR