The asymptotic decomposition of solution of singularly perturbed differential and operational equation in the critical case
Matematičeskoe modelirovanie, Tome 26 (2014) no. 4, pp. 65-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

Formal asymptotic decomposition on small parameter of solution for initial task for singularly perturbed differential and operator equation in critical case is constructed. Estimates of functions of splash and boundary functions are found, assessment of residual member of decomposition is received.
Keywords: asymptotic decomposition of solution, small parameter, singularly perturbations, differential and operator equations, initial task, critical case, modified method of boundary functions.
@article{MM_2014_26_4_a5,
     author = {A. V. Zaborskiy and A. V. Nesterov},
     title = {The asymptotic decomposition of solution of singularly perturbed differential and operational equation in the critical case},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--79},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_4_a5/}
}
TY  - JOUR
AU  - A. V. Zaborskiy
AU  - A. V. Nesterov
TI  - The asymptotic decomposition of solution of singularly perturbed differential and operational equation in the critical case
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 65
EP  - 79
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_4_a5/
LA  - ru
ID  - MM_2014_26_4_a5
ER  - 
%0 Journal Article
%A A. V. Zaborskiy
%A A. V. Nesterov
%T The asymptotic decomposition of solution of singularly perturbed differential and operational equation in the critical case
%J Matematičeskoe modelirovanie
%D 2014
%P 65-79
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_4_a5/
%G ru
%F MM_2014_26_4_a5
A. V. Zaborskiy; A. V. Nesterov. The asymptotic decomposition of solution of singularly perturbed differential and operational equation in the critical case. Matematičeskoe modelirovanie, Tome 26 (2014) no. 4, pp. 65-79. http://geodesic.mathdoc.fr/item/MM_2014_26_4_a5/

[1] Nesterov A. V., “Asimptotika resheniya slabo nelineinoi sistemy differentsialnykh uravnenii tipa “reaktsiya-perenos””, Matematicheskoe modelirovanie, 13:12 (2001), 58–64 | MR | Zbl

[2] Nesterov A. V., Shuliko O. V., “Asimptotika resheniya singulyarno vozmuschennoi sistemy differentsialnykh uravnenii pervogo poryadka v chastnykh proizvodnykh s maloi nelineinostyu v kriticheskom sluchae”, ZhVMiMF, 47:3 (2007), 438–444 | MR | Zbl

[3] Nesterov A. V., “Ob asimptotike resheniya singulyarno vozmuschennoi giperbolicheskoi sistemy uravnenii s maloi nelineinostyu v kriticheskom sluchae”, ZhVMiMF, 52:7 (2012), 1267–1276 | Zbl

[4] Vasileva A. B., Butuzov V. F., Singulyarno vozmuschennye uravneniya v kriticheskikh sluchayakh, Izd-vo Mosk. un-ta, M., 1978, 106 pp. | MR

[5] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970, 536 pp. | MR

[6] Tupchiev V. A., Chepurko A. N., “Asimptotika resheniya spektralnoi zadachi perenosa neitronov v sloe”, Differentsialnye uravneniya, 32:6 (1996), 847–850

[7] Latyshev V. N., Ob asimptotike resheniya singulyarno-vozmuschennoi spektralnoi zadachi, voznikayuschei v teorii perenosa, OIAtE, Obninsk, 1987, 26 pp.

[8] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 334 pp. | MR