Three phase filtration modeling by explicit methods on hybrid computer systems
Matematičeskoe modelirovanie, Tome 26 (2014) no. 4, pp. 33-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper an explicit algorithm constructed by the analogy with the kinetically-consistent difference schemes is proposed to solve problems of three-phase filtration. The filtration model includes the energy equation and allows to account for possible sources of heat emission. Parallel implementation is directed to high performance computer systems with graphics accelerators. In the code the computational domain decomposition is optimized to obtain additional speed-up of calculations.
Keywords: multiphase flow in porous media, explicit difference schemes, parallel computing, graphics accelerators, load balancing.
@article{MM_2014_26_4_a2,
     author = {A. A. Lyupa and D. N. Morozov and M. A. Trapeznikova and B. N. Chetverushkin and N. G. Churbanova},
     title = {Three phase filtration modeling by explicit methods on hybrid computer systems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--43},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_4_a2/}
}
TY  - JOUR
AU  - A. A. Lyupa
AU  - D. N. Morozov
AU  - M. A. Trapeznikova
AU  - B. N. Chetverushkin
AU  - N. G. Churbanova
TI  - Three phase filtration modeling by explicit methods on hybrid computer systems
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 33
EP  - 43
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_4_a2/
LA  - ru
ID  - MM_2014_26_4_a2
ER  - 
%0 Journal Article
%A A. A. Lyupa
%A D. N. Morozov
%A M. A. Trapeznikova
%A B. N. Chetverushkin
%A N. G. Churbanova
%T Three phase filtration modeling by explicit methods on hybrid computer systems
%J Matematičeskoe modelirovanie
%D 2014
%P 33-43
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_4_a2/
%G ru
%F MM_2014_26_4_a2
A. A. Lyupa; D. N. Morozov; M. A. Trapeznikova; B. N. Chetverushkin; N. G. Churbanova. Three phase filtration modeling by explicit methods on hybrid computer systems. Matematičeskoe modelirovanie, Tome 26 (2014) no. 4, pp. 33-43. http://geodesic.mathdoc.fr/item/MM_2014_26_4_a2/

[1] Chetverushkin B. N., Morozov D. N., Trapeznikova M. A., Churbanova N. G., Shilnikov E. V., “Ob odnoi skheme dlya resheniya zadach filtratsii”, Matem. modelir., 22:4 (2010), 99–109 | MR | Zbl

[2] Morozov D. N., Trapeznikova M. A., Chetverushkin B. N., Churbanova N. G., “Ispolzovanie yavnykh skhem dlya modelirovaniya protsessa dvukhfaznoi filtratsii”, Matematicheskoe modelirovanie, 23:7 (2011), 52–60 | Zbl

[3] Morozov D. N., Trapeznikova M. A., Chetverushkin B. N., Churbanova N. G., “Modelirovanie zadach filtratsii na gibridnykh vychislitelnykh sistemakh”, Mat. model., 24:10 (2012), 33–39 | Zbl

[4] Chetverushkin B. N., Kineticheski-soglasovannye skhemy v gazovoi dinamike, Izd-vo MGU, M., 1999

[5] Chetverushkin B. N., “K voprosu ob ogranichenii snizu na masshtaby v mekhanike sploshnoi sredy”, Vremya, khaos, matematicheskie problemy, 4, Izd-vo MGU, 2009, 75–96

[6] Aziz X., Settari E., Matematicheskoe modelirovanie plastovykh sistem, 2-e izd., Institut kompyuternykh issledovanii, M.–Izhevsk, 2004 | Zbl

[7] Parker J. C., Lenhard R. J., Kuppusami T., “A parametric model for constitutive properties governing multiphase flow in porous media”, Water Resources Research, 23:4 (1987), 618–624 | DOI

[8] Van Genuchten M. T., “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils”, Soil Sci. Soc. Am. J., 44 (1980), 892–898 | DOI

[9] Isupov N. V., Trapeznikova M. A., Churbanova N. G., Shilnikov E. V., “Modelirovanie protsessov prosachivaniya mnogofaznykh zhidkostei v sloistoi poristoi srede”, Matematicheskoe modelirovanie, 22:6 (2010), 84–98 | Zbl