Sample distribution function construction for non-stationary time-series forecasting
Matematičeskoe modelirovanie, Tome 26 (2014) no. 3, pp. 97-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of non-stationary time-series trajectory generation is proposed in accordance with Liouville evolution equation for the empirical distribution function density. With this generated series the non-autonomic dynamical chaotic system can be associated. For this system the Liapunov factor is estimated in the case of quasi-stationary initial distribution.
Keywords: non-stationary time series, empirical distribution function, kinetic evolution equation, Lyapunov exponent.
@article{MM_2014_26_3_a6,
     author = {A. D. Bosov and R. S. Kalmetiev and Yu. N. Orlov},
     title = {Sample distribution function construction for non-stationary time-series forecasting},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--107},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_3_a6/}
}
TY  - JOUR
AU  - A. D. Bosov
AU  - R. S. Kalmetiev
AU  - Yu. N. Orlov
TI  - Sample distribution function construction for non-stationary time-series forecasting
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 97
EP  - 107
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_3_a6/
LA  - ru
ID  - MM_2014_26_3_a6
ER  - 
%0 Journal Article
%A A. D. Bosov
%A R. S. Kalmetiev
%A Yu. N. Orlov
%T Sample distribution function construction for non-stationary time-series forecasting
%J Matematičeskoe modelirovanie
%D 2014
%P 97-107
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_3_a6/
%G ru
%F MM_2014_26_3_a6
A. D. Bosov; R. S. Kalmetiev; Yu. N. Orlov. Sample distribution function construction for non-stationary time-series forecasting. Matematičeskoe modelirovanie, Tome 26 (2014) no. 3, pp. 97-107. http://geodesic.mathdoc.fr/item/MM_2014_26_3_a6/

[1] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, Mir, M., 1964 | Zbl

[2] Khardle V., Prikladnaya neparametricheskaya regressiya, Mir, M., 1993 | MR

[3] S. A. Prokhorov, Matematicheskoe opisanie i modelirovanie sluchainykh protsessov, Samarskii nauchnyi tsentr RAN, Uralsk, 2001

[4] B. L. S. Pracasa Rao, Statistical Inference for Fractional Diffusion Processes, Wiley, 2010, 249 pp. | MR

[5] Gnedenko B. V., Kurs teorii veroyatnostei, Fizmatlit, M., 1961, 406 pp. | MR

[6] http://www.finam.ru

[7] Yu. N. Orlov, K. P. Osminin, “Postroenie vyborochnoi funktsii raspredeleniya dlya prognozirovaniya nestatsionarnogo vremennogo ryada”, Matematich. modelirovanie, 2008, no. 9, 23–33 | MR | Zbl

[8] A. D. Bosov, Yu. N. Orlov, “Kinetiko-gidrodinamicheskii podkhod k prognozirovaniyu nestatsionarnykh vremennykh ryadov na osnove uravneniya Fokkera–Planka”, Tr. MFTI, 3:4 (2012)

[9] V. M. Anikin, A. F. Golubentsev, Analiticheskie modeli determinirovannogo khaosa, Fizmatlit, M., 2007, 328 pp.

[10] G. G. Malinetskii, Khaos. Struktury. Vychislitelnyi eksperiment. Vvedenie v nelineinuyu dinamiku, Editorial URSS, M., 2005